S obzirom na mnoge hrpe novčića koji su poredani pored. Moramo skupiti sve te novčiće u minimalnom broju koraka pri čemu u jednom koraku možemo skupiti jednu vodoravnu liniju novčića ili okomitu liniju novčića, a skupljeni novčići trebaju biti kontinuirani.
Primjeri:
Input : height[] = [2 1 2 5 1] Each value of this array corresponds to the height of stack that is we are given five stack of coins where in first stack 2 coins are there then in second stack 1 coin is there and so on. Output : 4 We can collect all above coins in 4 steps which are shown in below diagram. Each step is shown by different color. First we have collected last horizontal line of coins after which stacks remains as [1 0 1 4 0] after that another horizontal line of coins is collected from stack 3 and 4 then a vertical line from stack 4 and at the end a horizontal line from stack 1. Total steps are 4.
neuredno obilaženje binarnog stabla
Ovaj problem možemo riješiti metodom zavadi pa vladaj. Vidimo da je uvijek korisno ukloniti vodoravne linije odozdo. Pretpostavimo da radimo na hrpama od l indeksa do r indeksa u rekurzijskom koraku svaki put kad odaberemo minimalnu visinu, uklonimo one mnoge vodoravne linije nakon čega će se stog podijeliti na dva dijela od l do minimuma i od minimuma +1 do r i pozivat ćemo rekurzivno te podnizove. Još jedna stvar je da također možemo skupljati novčiće pomoću okomitih linija pa ćemo odabrati minimum između rezultata rekurzivnih poziva i (r - l) jer korištenjem (r - l) okomitih linija uvijek možemo sakupiti sve novčiće.
Budući da svaki put kada pozivamo svaku podnizu i pronalaženje minimalne ukupne vremenske složenosti rješenja bit će O(N2)
C++
// C++ program to find minimum number of // steps to collect stack of coins #include using namespace std; // recursive method to collect coins from // height array l to r with height h already // collected int minStepsRecur(int height[] int l int r int h) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to get minimum height // index int m = l; for (int i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array int minSteps(int height[] int N) { return minStepsRecur(height 0 N 0); } // Driver code to test above methods int main() { int height[] = { 2 1 2 5 1 }; int N = sizeof(height) / sizeof(int); cout << minSteps(height N) << endl; return 0; }
Java // Java Code to Collect all coins in // minimum number of steps import java.util.*; class GFG { // recursive method to collect coins from // height array l to r with height h already // collected public static int minStepsRecur(int height[] int l int r int h) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to get minimum height // index int m = l; for (int i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return Math.min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array public static int minSteps(int height[] int N) { return minStepsRecur(height 0 N 0); } /* Driver program to test above function */ public static void main(String[] args) { int height[] = { 2 1 2 5 1 }; int N = height.length; System.out.println(minSteps(height N)); } } // This code is contributed by Arnav Kr. Mandal.
Python 3 # Python 3 program to find # minimum number of steps # to collect stack of coins # recursive method to collect # coins from height array l to # r with height h already # collected def minStepsRecur(height l r h): # if l is more than r # no steps needed if l >= r: return 0; # loop over heights to # get minimum height index m = l for i in range(l r): if height[i] < height[m]: m = i # choose minimum from # 1) collecting coins using # all vertical lines (total r - l) # 2) collecting coins using # lower horizontal lines and # recursively on left and # right segments return min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h) # method returns minimum number # of step to collect coin from # stack with height in height[] array def minSteps(height N): return minStepsRecur(height 0 N 0) # Driver code height = [ 2 1 2 5 1 ] N = len(height) print(minSteps(height N)) # This code is contributed # by ChitraNayal
C# // C# Code to Collect all coins in // minimum number of steps using System; class GFG { // recursive method to collect coins from // height array l to r with height h already // collected public static int minStepsRecur(int[] height int l int r int h) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to // get minimum height index int m = l; for (int i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return Math.Min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array public static int minSteps(int[] height int N) { return minStepsRecur(height 0 N 0); } /* Driver program to test above function */ public static void Main() { int[] height = { 2 1 2 5 1 }; int N = height.Length; Console.Write(minSteps(height N)); } } // This code is contributed by nitin mittal
PHP // PHP program to find minimum number of // steps to collect stack of coins // recursive method to collect // coins from height array l to // r with height h already // collected function minStepsRecur($height $l $r $h) { // if l is more than r // no steps needed if ($l >= $r) return 0; // loop over heights to // get minimum height // index $m = $l; for ($i = $l; $i < $r; $i++) if ($height[$i] < $height[$m]) $m = $i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return min($r - $l minStepsRecur($height $l $m $height[$m]) + minStepsRecur($height $m + 1 $r $height[$m]) + $height[$m] - $h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array function minSteps($height $N) { return minStepsRecur($height 0 $N 0); } // Driver Code $height = array(2 1 2 5 1); $N = sizeof($height); echo minSteps($height $N) ; // This code is contributed by nitin mittal. ?> JavaScript <script> // Javascript Code to Collect all coins in // minimum number of steps // recursive method to collect coins from // height array l to r with height h already // collected function minStepsRecur(heightlrh) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to get minimum height // index let m = l; for (let i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return Math.min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array function minSteps(heightN) { return minStepsRecur(height 0 N 0); } /* Driver program to test above function */ let height=[2 1 2 5 1 ]; let N = height.length; document.write(minSteps(height N)); // This code is contributed by avanitrachhadiya2155 </script>
Izlaz:
4
Vremenska složenost: Vremenska složenost ovog algoritma je O(N^2) gdje je N broj elemenata u nizu visina.
Složenost prostora: Prostorna složenost ovog algoritma je O(N) zbog rekurzivnih poziva koji se vrše na nizu visina.