Dat je niz s koji se sastoji samo od malih slova engleskog jezika pronađite minimum broj znakova koji treba biti dodao prema ispred od s da bi to bio palindrom.
Bilješka: Palindrom je niz koji se isto čita naprijed i natrag.
Primjeri:
Ulazni : s = 'abc'
Izlaz : 2
Obrazloženje : Palindrom iznad niza možemo napraviti kao 'cbabc' dodavanjem 'b' i 'c' ispred.Ulazni : s = 'aacecaaaa'
Izlaz : 2
Obrazloženje : Palindrom iznad niza možemo napraviti kao 'aaaacecaaaa' dodavanjem dva a ispred niza.
Sadržaj
- [Naivni pristup] Provjera svih prefiksa - O(n^2) Vrijeme i O(1) Prostor
- [Očekivani pristup 1] Korištenje lps polja KMP algoritma - O(n) vremena i O(n) prostora
- [Očekivani pristup 2] Korištenje Manacherovog algoritma
[Naivni pristup] Provjera svih prefiksa - O(n^2) Vrijeme i O(1) Prostor
Ideja se temelji na zapažanju da trebamo pronaći najduži prefiks iz zadanog niza koji je ujedno i palindrom. Tada će minimalni prednji znakovi koje treba dodati da bi se napravio palindrom zadanog niza biti preostali znakovi.
C++ #include using namespace std; // function to check if the substring s[i...j] is a palindrome bool isPalindrome(string &s int i int j) { while (i < j) { // if characters at the ends are not equal // it's not a palindrome if (s[i] != s[j]) { return false; } i++; j--; } return true; } int minChar(string &s) { int cnt = 0; int i = s.size() - 1; // iterate from the end of the string checking for the // longestpalindrome starting from the beginning while (i >= 0 && !isPalindrome(s 0 i)) { i--; cnt++; } return cnt; } int main() { string s = 'aacecaaaa'; cout << minChar(s); return 0; }
C #include #include #include // function to check if the substring s[i...j] is a palindrome bool isPalindrome(char s[] int i int j) { while (i < j) { // if characters at the ends are not the same // it's not a palindrome if (s[i] != s[j]) { return false; } i++; j--; } return true; } int minChar(char s[]) { int cnt = 0; int i = strlen(s) - 1; // iterate from the end of the string checking for the // longest palindrome starting from the beginning while (i >= 0 && !isPalindrome(s 0 i)) { i--; cnt++; } return cnt; } int main() { char s[] = 'aacecaaaa'; printf('%d' minChar(s)); return 0; }
Java class GfG { // function to check if the substring // s[i...j] is a palindrome static boolean isPalindrome(String s int i int j) { while (i < j) { // if characters at the ends are not the same // it's not a palindrome if (s.charAt(i) != s.charAt(j)) { return false; } i++; j--; } return true; } static int minChar(String s) { int cnt = 0; int i = s.length() - 1; // iterate from the end of the string checking for the // longest palindrome starting from the beginning while (i >= 0 && !isPalindrome(s 0 i)) { i--; cnt++; } return cnt; } public static void main(String[] args) { String s = 'aacecaaaa'; System.out.println(minChar(s)); } }
Python # function to check if the substring s[i...j] is a palindrome def isPalindrome(s i j): while i < j: # if characters at the ends are not the same # it's not a palindrome if s[i] != s[j]: return False i += 1 j -= 1 return True def minChar(s): cnt = 0 i = len(s) - 1 # iterate from the end of the string checking for the # longest palindrome starting from the beginning while i >= 0 and not isPalindrome(s 0 i): i -= 1 cnt += 1 return cnt if __name__ == '__main__': s = 'aacecaaaa' print(minChar(s))
C# using System; class GfG { // function to check if the substring s[i...j] is a palindrome static bool isPalindrome(string s int i int j) { while (i < j) { // if characters at the ends are not the same // it's not a palindrome if (s[i] != s[j]) { return false; } i++; j--; } return true; } static int minChar(string s) { int cnt = 0; int i = s.Length - 1; // iterate from the end of the string checking for the longest // palindrome starting from the beginning while (i >= 0 && !isPalindrome(s 0 i)) { i--; cnt++; } return cnt; } static void Main() { string s = 'aacecaaaa'; Console.WriteLine(minChar(s)); } }
JavaScript // function to check if the substring s[i...j] is a palindrome function isPalindrome(s i j) { while (i < j) { // if characters at the ends are not the same // it's not a palindrome if (s[i] !== s[j]) { return false; } i++; j--; } return true; } function minChar(s) { let cnt = 0; let i = s.length - 1; // iterate from the end of the string checking for the // longest palindrome starting from the beginning while (i >= 0 && !isPalindrome(s 0 i)) { i--; cnt++; } return cnt; } // Driver code let s = 'aacecaaaa'; console.log(minChar(s));
Izlaz
2
[Očekivani pristup 1] Korištenje lps polja KMP algoritma - O(n) vremena i O(n) prostora
Ključno opažanje je da najduži palindromski prefiks niza postaje najduži palindromski sufiks njegovog reversa.
Dat je niz s = 'aacecaaaa' njegov obrnuti revS = 'aaaacecaa'. Najduži palindromski prefiks od s je 'aacecaa'.
Da bismo to učinkovito pronašli, koristimo LPS polje iz KMP algoritam . Izvorni niz spajamo s posebnim znakom i njegovim obrnutim znakom: s + '$' + revS.
LPS niz za ovaj kombinirani niz pomaže u identificiranju najduljeg prefiksa s koji odgovara sufiksu revS koji također predstavlja palindromski prefiks s.
Zadnja vrijednost LPS niza nam govori koliko znakova već čini palindrom na početku. Stoga je minimalni broj znakova koje treba dodati da bi s bio palindrom s.length() - lps.back().
C++#include #include #include using namespace std; vector<int> computeLPSArray(string &pat) { int n = pat.length(); vector<int> lps(n); // lps[0] is always 0 lps[0] = 0; int len = 0; // loop calculates lps[i] for i = 1 to M-1 int i = 1; while (i < n) { // if the characters match increment len // and set lps[i] if (pat[i] == pat[len]) { len++; lps[i] = len; i++; } // if there is a mismatch else { // if len is not zero update len to // the last known prefix length if (len != 0) { len = lps[len - 1]; } // no prefix matches set lps[i] to 0 else { lps[i] = 0; i++; } } } return lps; } // returns minimum character to be added at // front to make string palindrome int minChar(string &s) { int n = s.length(); string rev = s; reverse(rev.begin() rev.end()); // get concatenation of string special character // and reverse string s = s + '$' + rev; // get LPS array of this concatenated string vector<int> lps = computeLPSArray(s); // by subtracting last entry of lps vector from // string length we will get our result return (n - lps.back()); } int main() { string s = 'aacecaaaa'; cout << minChar(s); return 0; }
Java import java.util.ArrayList; class GfG { static int[] computeLPSArray(String pat) { int n = pat.length(); int[] lps = new int[n]; // lps[0] is always 0 lps[0] = 0; int len = 0; // loop calculates lps[i] for i = 1 to n-1 int i = 1; while (i < n) { // if the characters match increment len // and set lps[i] if (pat.charAt(i) == pat.charAt(len)) { len++; lps[i] = len; i++; } // if there is a mismatch else { // if len is not zero update len to // the last known prefix length if (len != 0) { len = lps[len - 1]; } // no prefix matches set lps[i] to 0 else { lps[i] = 0; i++; } } } return lps; } // returns minimum character to be added at // front to make string palindrome static int minChar(String s) { int n = s.length(); String rev = new StringBuilder(s).reverse().toString(); // get concatenation of string special character // and reverse string s = s + '$' + rev; // get LPS array of this concatenated string int[] lps = computeLPSArray(s); // by subtracting last entry of lps array from // string length we will get our result return (n - lps[lps.length - 1]); } public static void main(String[] args) { String s = 'aacecaaaa'; System.out.println(minChar(s)); } }
Python def computeLPSArray(pat): n = len(pat) lps = [0] * n # lps[0] is always 0 len_lps = 0 # loop calculates lps[i] for i = 1 to n-1 i = 1 while i < n: # if the characters match increment len # and set lps[i] if pat[i] == pat[len_lps]: len_lps += 1 lps[i] = len_lps i += 1 # if there is a mismatch else: # if len is not zero update len to # the last known prefix length if len_lps != 0: len_lps = lps[len_lps - 1] # no prefix matches set lps[i] to 0 else: lps[i] = 0 i += 1 return lps # returns minimum character to be added at # front to make string palindrome def minChar(s): n = len(s) rev = s[::-1] # get concatenation of string special character # and reverse string s = s + '$' + rev # get LPS array of this concatenated string lps = computeLPSArray(s) # by subtracting last entry of lps array from # string length we will get our result return n - lps[-1] if __name__ == '__main__': s = 'aacecaaaa' print(minChar(s))
C# using System; class GfG { static int[] computeLPSArray(string pat) { int n = pat.Length; int[] lps = new int[n]; // lps[0] is always 0 lps[0] = 0; int len = 0; // loop calculates lps[i] for i = 1 to n-1 int i = 1; while (i < n) { // if the characters match increment len // and set lps[i] if (pat[i] == pat[len]) { len++; lps[i] = len; i++; } // if there is a mismatch else { // if len is not zero update len to // the last known prefix length if (len != 0) { len = lps[len - 1]; } // no prefix matches set lps[i] to 0 else { lps[i] = 0; i++; } } } return lps; } // minimum character to be added at // front to make string palindrome static int minChar(string s) { int n = s.Length; char[] charArray = s.ToCharArray(); Array.Reverse(charArray); string rev = new string(charArray); // get concatenation of string special character // and reverse string s = s + '$' + rev; // get LPS array of this concatenated string int[] lps = computeLPSArray(s); // by subtracting last entry of lps array from // string length we will get our result return n - lps[lps.Length - 1]; } static void Main() { string s = 'aacecaaaa'; Console.WriteLine(minChar(s)); } }
JavaScript function computeLPSArray(pat) { let n = pat.length; let lps = new Array(n).fill(0); // lps[0] is always 0 let len = 0; // loop calculates lps[i] for i = 1 to n-1 let i = 1; while (i < n) { // if the characters match increment len // and set lps[i] if (pat[i] === pat[len]) { len++; lps[i] = len; i++; } // if there is a mismatch else { // if len is not zero update len to // the last known prefix length if (len !== 0) { len = lps[len - 1]; } // no prefix matches set lps[i] to 0 else { lps[i] = 0; i++; } } } return lps; } // returns minimum character to be added at // front to make string palindrome function minChar(s) { let n = s.length; let rev = s.split('').reverse().join(''); // get concatenation of string special character // and reverse string s = s + '$' + rev; // get LPS array of this concatenated string let lps = computeLPSArray(s); // by subtracting last entry of lps array from // string length we will get our result return n - lps[lps.length - 1]; } // Driver Code let s = 'aacecaaaa'; console.log(minChar(s));
Izlaz
2
[Očekivani pristup 2] Korištenje Manacherovog algoritma
C++Ideja je koristiti Manacherov algoritam za učinkovito pronalaženje svih palindromskih podnizova u linearnom vremenu.
String transformiramo umetanjem posebnih znakova (#) kako bismo ujednačeno rukovali palindromima parne i neparne duljine.
Nakon predprocesiranja skeniramo od kraja izvornog niza i koristimo polje radijusa palindroma da provjerimo je li prefiks s[0...i] palindrom. Prvi takav indeks i daje nam najduži palindromski prefiks i vraćamo n - (i + 1) kao minimalni broj znakova za dodavanje.
#include #include #include using namespace std; // manacher's algorithm for finding longest // palindromic substrings class manacher { public: // array to store palindrome lengths centered // at each position vector<int> p; // modified string with separators and sentinels string ms; manacher(string &s) { ms = '@'; for (char c : s) { ms += '#' + string(1 c); } ms += '#$'; runManacher(); } // core Manacher's algorithm void runManacher() { int n = ms.size(); p.assign(n 0); int l = 0 r = 0; for (int i = 1; i < n - 1; ++i) { if (i < r) p[i] = min(r - i p[r + l - i]); // expand around the current center while (ms[i + 1 + p[i]] == ms[i - 1 - p[i]]) ++p[i]; // update center if palindrome goes beyond // current right boundary if (i + p[i] > r) { l = i - p[i]; r = i + p[i]; } } } // returns the length of the longest palindrome // centered at given position int getLongest(int cen int odd) { int pos = 2 * cen + 2 + !odd; return p[pos]; } // checks whether substring s[l...r] is a palindrome bool check(int l int r) { int len = r - l + 1; int longest = getLongest((l + r) / 2 len % 2); return len <= longest; } }; // returns the minimum number of characters to add at the // front to make the given string a palindrome int minChar(string &s) { int n = s.size(); manacher m(s); // scan from the end to find the longest // palindromic prefix for (int i = n - 1; i >= 0; --i) { if (m.check(0 i)) return n - (i + 1); } return n - 1; } int main() { string s = 'aacecaaaa'; cout << minChar(s) << endl; return 0; }
Java class GfG { // manacher's algorithm for finding longest // palindromic substrings static class manacher { // array to store palindrome lengths centered // at each position int[] p; // modified string with separators and sentinels String ms; manacher(String s) { StringBuilder sb = new StringBuilder('@'); for (char c : s.toCharArray()) { sb.append('#').append(c); } sb.append('#$'); ms = sb.toString(); runManacher(); } // core Manacher's algorithm void runManacher() { int n = ms.length(); p = new int[n]; int l = 0 r = 0; for (int i = 1; i < n - 1; ++i) { if (i < r) p[i] = Math.min(r - i p[r + l - i]); // expand around the current center while (ms.charAt(i + 1 + p[i]) == ms.charAt(i - 1 - p[i])) p[i]++; // update center if palindrome goes beyond // current right boundary if (i + p[i] > r) { l = i - p[i]; r = i + p[i]; } } } // returns the length of the longest palindrome // centered at given position int getLongest(int cen int odd) { int pos = 2 * cen + 2 + (odd == 0 ? 1 : 0); return p[pos]; } // checks whether substring s[l...r] is a palindrome boolean check(int l int r) { int len = r - l + 1; int longest = getLongest((l + r) / 2 len % 2); return len <= longest; } } // returns the minimum number of characters to add at the // front to make the given string a palindrome static int minChar(String s) { int n = s.length(); manacher m = new manacher(s); // scan from the end to find the longest // palindromic prefix for (int i = n - 1; i >= 0; --i) { if (m.check(0 i)) return n - (i + 1); } return n - 1; } public static void main(String[] args) { String s = 'aacecaaaa'; System.out.println(minChar(s)); } }
Python # manacher's algorithm for finding longest # palindromic substrings class manacher: # array to store palindrome lengths centered # at each position def __init__(self s): # modified string with separators and sentinels self.ms = '@' for c in s: self.ms += '#' + c self.ms += '#$' self.p = [] self.runManacher() # core Manacher's algorithm def runManacher(self): n = len(self.ms) self.p = [0] * n l = r = 0 for i in range(1 n - 1): if i < r: self.p[i] = min(r - i self.p[r + l - i]) # expand around the current center while self.ms[i + 1 + self.p[i]] == self.ms[i - 1 - self.p[i]]: self.p[i] += 1 # update center if palindrome goes beyond # current right boundary if i + self.p[i] > r: l = i - self.p[i] r = i + self.p[i] # returns the length of the longest palindrome # centered at given position def getLongest(self cen odd): pos = 2 * cen + 2 + (0 if odd else 1) return self.p[pos] # checks whether substring s[l...r] is a palindrome def check(self l r): length = r - l + 1 longest = self.getLongest((l + r) // 2 length % 2) return length <= longest # returns the minimum number of characters to add at the # front to make the given string a palindrome def minChar(s): n = len(s) m = manacher(s) # scan from the end to find the longest # palindromic prefix for i in range(n - 1 -1 -1): if m.check(0 i): return n - (i + 1) return n - 1 if __name__ == '__main__': s = 'aacecaaaa' print(minChar(s))
C# using System; class GfG { // manacher's algorithm for finding longest // palindromic substrings class manacher { // array to store palindrome lengths centered // at each position public int[] p; // modified string with separators and sentinels public string ms; public manacher(string s) { ms = '@'; foreach (char c in s) { ms += '#' + c; } ms += '#$'; runManacher(); } // core Manacher's algorithm void runManacher() { int n = ms.Length; p = new int[n]; int l = 0 r = 0; for (int i = 1; i < n - 1; ++i) { if (i < r) p[i] = Math.Min(r - i p[r + l - i]); // expand around the current center while (ms[i + 1 + p[i]] == ms[i - 1 - p[i]]) p[i]++; // update center if palindrome goes beyond // current right boundary if (i + p[i] > r) { l = i - p[i]; r = i + p[i]; } } } // returns the length of the longest palindrome // centered at given position public int getLongest(int cen int odd) { int pos = 2 * cen + 2 + (odd == 0 ? 1 : 0); return p[pos]; } // checks whether substring s[l...r] is a palindrome public bool check(int l int r) { int len = r - l + 1; int longest = getLongest((l + r) / 2 len % 2); return len <= longest; } } // returns the minimum number of characters to add at the // front to make the given string a palindrome static int minChar(string s) { int n = s.Length; manacher m = new manacher(s); // scan from the end to find the longest // palindromic prefix for (int i = n - 1; i >= 0; --i) { if (m.check(0 i)) return n - (i + 1); } return n - 1; } static void Main() { string s = 'aacecaaaa'; Console.WriteLine(minChar(s)); } }
JavaScript // manacher's algorithm for finding longest // palindromic substrings class manacher { // array to store palindrome lengths centered // at each position constructor(s) { // modified string with separators and sentinels this.ms = '@'; for (let c of s) { this.ms += '#' + c; } this.ms += '#$'; this.p = []; this.runManacher(); } // core Manacher's algorithm runManacher() { const n = this.ms.length; this.p = new Array(n).fill(0); let l = 0 r = 0; for (let i = 1; i < n - 1; ++i) { if (i < r) this.p[i] = Math.min(r - i this.p[r + l - i]); // expand around the current center while (this.ms[i + 1 + this.p[i]] === this.ms[i - 1 - this.p[i]]) this.p[i]++; // update center if palindrome goes beyond // current right boundary if (i + this.p[i] > r) { l = i - this.p[i]; r = i + this.p[i]; } } } // returns the length of the longest palindrome // centered at given position getLongest(cen odd) { const pos = 2 * cen + 2 + (odd === 0 ? 1 : 0); return this.p[pos]; } // checks whether substring s[l...r] is a palindrome check(l r) { const len = r - l + 1; const longest = this.getLongest(Math.floor((l + r) / 2) len % 2); return len <= longest; } } // returns the minimum number of characters to add at the // front to make the given string a palindrome function minChar(s) { const n = s.length; const m = new manacher(s); // scan from the end to find the longest // palindromic prefix for (let i = n - 1; i >= 0; --i) { if (m.check(0 i)) return n - (i + 1); } return n - 1; } // Driver Code const s = 'aacecaaaa'; console.log(minChar(s));
Izlaz
2
Vremenska složenost: O(n) upraviteljev algoritam radi u linearnom vremenu širenjem palindroma u svakom centru bez ponovnog pregledavanja znakova, a petlja za provjeru prefiksa izvodi O(1) operacija po znaku preko n znakova.
Pomoćni prostor: O(n) koji se koristi za modificirani niz i niz dužine palindroma p[] koji oba rastu linearno s veličinom ulaza.