S obzirom na dva niza s1 i s2 . Zadatak je da se ukloniti/brisati i umetnuti the minimalni broj znakova iz s1 transformirati ga u s2 . Moglo bi biti moguće da isti lik treba ukloniti/izbrisati s jedne točke s1 i umetnuti na drugu točku.
Primjer 1:
Ulazni: s1 = 'hrpa' s2 =
Izlaz: 3
Obrazloženje: Minimalno brisanje = 2 i minimalno umetanje = 1
p i h se brišu iz gomile i zatim se p umeće na početak. Imajte na umu jednu stvar, iako je p bio potreban, prvo je uklonjen/izbrisan sa svog položaja, a zatim je umetnut na neki drugi položaj. Tako p doprinosi jedan broju brisanja i jedan broju umetanja.Ulazni: s1 = 'geeksforgeeks' s2 = 'geeks'
Izlaz: 8
Obrazloženje: 8 brisanja, tj. uklanjanje svih znakova niza 'forgeeks'.
Sadržaj
- Korištenje rekurzije - O(2^n) vremena i O(n) prostora
- Korištenje DP-a odozgo prema dolje (memoizacija) - O(n^2) vremena i O(n^2) prostora
- Korištenje DP-a odozdo prema gore (tabulacija) - O(n^2) vremena i O(n^2) prostora
- Korištenje Bottom-Up DP (Space-Optimization) – O(n^2) vremena i O(n) prostora
Korištenje rekurzije - O(2^n) vremena i O(n) prostora
C++Jednostavan pristup rješavanju problema uključuje generiranje svih podnizovi od s1 i za svaki podniz izračunavanje minimum brisanja i umetanja potrebnih za transformaciju u s2. Učinkovit pristup koristi koncept najduži zajednički podniz (LCS) pronaći duljinu najdužeg LCS. Jednom kada imamo LCS od dva niza možemo pronaći Minimalno umetanje i Brisanja pretvoriti s1 u s2.
- Do minimizirati brisanja samo trebamo ukloniti znakove iz s1 koji nisu dio najduži zajednički podniz (LCS) s s2 . To se može odrediti pomoću oduzimanjem the LCS duljina od dužine s1 . Stoga je minimalni broj brisanja:
minDeletions = duljina s1 - LCS duljina.- Slično kao minimizirati umetanja trebamo samo umetnuti znakove iz s2 u s1 koji nisu dio LCS-a. To se može odrediti pomoću oduzimanjem the LCS duljina od dužine s2 . Stoga je minimalni broj umetanja:
minInsertions = duljina s2 - LCS duljina.
// C++ program to find the minimum number of insertion and deletion // using recursion. #include using namespace std; int lcs(string &s1 string &s2 int m int n) { // Base case: If either string is empty // the LCS length is 0 if (m == 0 || n == 0) return 0; // If the last characters of both substrings match if (s1[m - 1] == s2[n - 1]) // Include the matching character in LCS and // recurse for remaining substrings return 1 + lcs(s1 s2 m - 1 n - 1); else // If the last characters do not match // find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 return max(lcs(s1 s2 m n - 1) lcs(s1 s2 m - 1 n)); } int minOperations(string s1 string s2) { int m = s1.size(); int n = s2.size(); // the length of the LCS for s1[0..m-1] // and s2[0..n-1] int len = lcs(s1 s2 m n); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed int total = minDeletions + minInsertions; return total; } int main() { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); cout << res; return 0; }
Java // Java program to find the minimum number of insertions and // deletions using recursion. class GfG { static int lcs(String s1 String s2 int m int n) { // Base case: If either string is empty the LCS // length is 0 if (m == 0 || n == 0) { return 0; } // If the last characters of both substrings match if (s1.charAt(m - 1) == s2.charAt(n - 1)) { // Include the matching character in LCS // and recurse for remaining substrings return 1 + lcs(s1 s2 m - 1 n - 1); } else { // If the last characters do not match // find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 return Math.max(lcs(s1 s2 m n - 1) lcs(s1 s2 m - 1 n)); } } static int minOperations(String s1 String s2) { int m = s1.length(); int n = s2.length(); // the length of LCS for s1[0..m-1] and // s2[0..n-1] int len = lcs(s1 s2 m n); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s2 int minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } public static void main(String[] args) { String s1 = 'AGGTAB'; String s2 = 'GXTXAYB'; int res = minOperations(s1 s2); System.out.println(res); } }
Python # Python program to find the minimum number of insertions # and deletions using recursion def lcs(s1 s2 m n): # Base case: If either string is empty # the LCS length is 0 if m == 0 or n == 0: return 0 # If the last characters of both substrings match if s1[m - 1] == s2[n - 1]: # Include the matching character in LCS and # recurse for remaining substrings return 1 + lcs(s1 s2 m - 1 n - 1) else: # If the last characters do not match # find the maximum LCS length by: # 1. Excluding the last character of s1 # 2. Excluding the last character of s2 return max(lcs(s1 s2 m n - 1) lcs(s1 s2 m - 1 n)) def minOperations(s1 s2): m = len(s1) n = len(s2) # the length of LCS for s1[0..m-1] and s2[0..n-1] lengthLcs = lcs(s1 s2 m n) # Characters to delete from str1 minDeletions = m - lengthLcs # Characters to insert into str1 minInsertions = n - lengthLcs # Total operations needed return minDeletions + minInsertions if __name__ == '__main__': s1 = 'AGGTAB' s2 = 'GXTXAYB' result = minOperations(s1 s2) print(result)
C# // C# program to find the minimum number of insertions and // deletions using recursion. using System; class GfG { static int lcs(string s1 string s2 int m int n) { // Base case: If either string is empty the LCS // length is 0 if (m == 0 || n == 0) return 0; // If the last characters of both substrings match if (s1[m - 1] == s2[n - 1]) { // Include the matching character in LCS // and recurse for remaining substrings return 1 + lcs(s1 s2 m - 1 n - 1); } else { // If the last characters do not match // find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 return Math.Max(lcs(s1 s2 m n - 1) lcs(s1 s2 m - 1 n)); } } static int minOperations(string s1 string s2) { int m = s1.Length; int n = s2.Length; // the length of LCS for s1[0..m-1] and // s2[0..n-1] int lengthLcs = lcs(s1 s2 m n); // Characters to delete from s1 int minDeletions = m - lengthLcs; // Characters to insert into s2 int minInsertions = n - lengthLcs; // Total operations needed return minDeletions + minInsertions; } static void Main(string[] args) { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int result = minOperations(s1 s2); Console.WriteLine(result); } }
JavaScript // JavaScript program to find the minimum number of // insertions and deletions using recursion function lcs(s1 s2 m n) { // Base case: If either string is empty the LCS length // is 0 if (m === 0 || n === 0) { return 0; } // If the last characters of both substrings match if (s1[m - 1] === s2[n - 1]) { // Include the matching character in LCS and recurse // for remaining substrings return 1 + lcs(s1 s2 m - 1 n - 1); } else { // If the last characters do not match find the // maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 return Math.max(lcs(s1 s2 m n - 1) lcs(s1 s2 m - 1 n)); } } function minOperations(s1 s2) { const m = s1.length; const n = s2.length; // Length of the LCS const len = lcs(s1 s2 m n); // Characters to delete from s1 const minDeletions = m - len; // Characters to insert into s1 const minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } const s1 = 'AGGTAB'; const s2 = 'GXTXAYB'; const res = minOperations(s1 s2); console.log(res);
Izlaz
5
Korištenje DP-a odozgo prema dolje (memoizacija) - O(n^2) vremena i O(n^2) prostora
C++U ovom pristupu primjenjujemo memoizacija za pohranjivanje rezultata preklapajućih podproblema dok se nalazi najduži zajednički podniz (LCS). A 2D niz dopis koristi se za spremanje LCS duljine za različite podnizove dvaju ulaznih nizova osiguravajući da se svaki podproblem riješi samo jednom.
Ova metoda je slična Najduži zajednički podslijed (LCS) problem s korištenjem memoizacije.
// C++ program to find the minimum of insertion and deletion // using memoization. #include #include using namespace std; int lcs(string &s1 string &s2 int m int n vector<vector<int>> &memo) { // Base case: If either string is empty the LCS length is 0 if (m == 0 || n == 0) return 0; // If the value is already computed return // it from the memo array if(memo[m][n]!=-1) return memo[m][n]; // If the last characters of both substrings match if (s1[m - 1] == s2[n - 1]) // Include the matching character in LCS and recurse for // remaining substrings return memo[m][n] = 1 + lcs(s1 s2 m - 1 n - 1 memo); else // If the last characters do not match find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 return memo[m][n] = max(lcs(s1 s2 m n - 1 memo) lcs(s1 s2 m - 1 n memo)); } int minOperations(string s1 string s2) { int m = s1.size(); int n = s2.size(); // Initialize the memoization array with -1. vector<vector<int>> memo = vector<vector<int>> (m+1vector<int>(n+1-1)); // the length of the LCS for // s1[0..m-1] and s2[0..n-1] int len = lcs(s1 s2 m n memo); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed int total = minDeletions + minInsertions; return total; } int main() { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); cout << res; return 0; }
Java // Java program to find the minimum of insertion and deletion // using memoization. class GfG { static int lcs(String s1 String s2 int m int n int[][] memo) { // Base case: If either string is empty // the LCS length is 0 if (m == 0 || n == 0) { return 0; } // If the value is already computed return it // from the memo array if (memo[m][n] != -1) { return memo[m][n]; } // If the last characters of both substrings match if (s1.charAt(m - 1) == s2.charAt(n - 1)) { // Include the matching character in LCS and recurse for // remaining substrings memo[m][n] = 1 + lcs(s1 s2 m - 1 n - 1 memo); } else { // If the last characters do not match // find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 memo[m][n] = Math.max(lcs(s1 s2 m n - 1 memo) lcs(s1 s2 m - 1 n memo)); } return memo[m][n]; } static int minOperations(String s1 String s2) { int m = s1.length(); int n = s2.length(); // Initialize the memoization array with -1 // (indicating uncalculated values) int[][] memo = new int[m + 1][n + 1]; for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { memo[i][j] = -1; } } // the length of LCS for s1[0..m-1] and s2[0..n-1] int len = lcs(s1 s2 m n memo); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } static void main(String[] args) { String s1 = 'AGGTAB'; String s2 = 'GXTXAYB'; int res = minOperations(s1 s2); System.out.println(res); } }
Python # Python program to find the minimum number of insertions and # deletions using memoization def lcs(s1 s2 m n memo): # Base case: If either string is empty the LCS length is 0 if m == 0 or n == 0: return 0 # If the value is already computed # return it from the memo array if memo[m][n] != -1: return memo[m][n] # If the last characters of both substrings match if s1[m - 1] == s2[n - 1]: # Include the matching character in LCS and # recurse for remaining substrings memo[m][n] = 1 + lcs(s1 s2 m - 1 n - 1 memo) else: # If the last characters do not match # find the maximum LCS length by: # 1. Excluding the last character of s1 # 2. Excluding the last character of s2 memo[m][n] = max(lcs(s1 s2 m n - 1 memo) lcs(s1 s2 m - 1 n memo)) # Return the computed value return memo[m][n] def minOperations(s1 s2): m = len(s1) n = len(s2) # Initialize the memoization array with -1 # (indicating uncalculated values) memo = [[-1 for _ in range(n + 1)] for _ in range(m + 1)] # Calculate the length of LCS for s1[0..m-1] and s2[0..n-1] lengthLcs = lcs(s1 s2 m n memo) # Characters to delete from s1 minDeletions = m - lengthLcs # Characters to insert into s1 minInsertions = n - lengthLcs # Total operations needed return minDeletions + minInsertions if __name__ == '__main__': s1 = 'AGGTAB' s2 = 'GXTXAYB' res = minOperations(s1 s2) print(res)
C# // C# program to find the minimum of insertion and deletion // using memoization. using System; class GfG { static int lcs(string s1 string s2 int m int n int[ ] memo) { // Base case: If either string is empty the LCS // length is 0 if (m == 0 || n == 0) { return 0; } // If the value is already computed return it from // the memo array if (memo[m n] != -1) { return memo[m n]; } // If the last characters of both substrings match if (s1[m - 1] == s2[n - 1]) { // Include the matching character in LCS and // recurse for remaining substrings memo[m n] = 1 + lcs(s1 s2 m - 1 n - 1 memo); } else { // If the last characters do not match find the // maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 memo[m n] = Math.Max(lcs(s1 s2 m n - 1 memo) lcs(s1 s2 m - 1 n memo)); } // Return the computed value return memo[m n]; } static int minOperations(string s1 string s2) { int m = s1.Length; int n = s2.Length; // Initialize the memoization array with -1 // (indicating uncalculated values) int[ ] memo = new int[m + 1 n + 1]; for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { memo[i j] = -1; } } // Calculate the length of LCS for s1[0..m-1] and // s2[0..n-1] int lengthLcs = lcs(s1 s2 m n memo); // Characters to delete from s1 int minDeletions = m - lengthLcs; // Characters to insert into s1 int minInsertions = n - lengthLcs; // Total operations needed return minDeletions + minInsertions; } static void Main(string[] args) { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); Console.WriteLine(res); } }
JavaScript // JavaScript program to find the minimum number of // insertions and deletions using memoization function lcs(s1 s2 m n memo) { // Base case: If either string is empty the LCS length // is 0 if (m === 0 || n === 0) { return 0; } // If the value is already computed return it from the // memo array if (memo[m][n] !== -1) { return memo[m][n]; } // If the last characters of both substrings match if (s1[m - 1] === s2[n - 1]) { // Include the matching character in LCS and recurse // for remaining substrings memo[m][n] = 1 + lcs(s1 s2 m - 1 n - 1 memo); } else { // If the last characters do not match find the // maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 memo[m][n] = Math.max(lcs(s1 s2 m n - 1 memo) lcs(s1 s2 m - 1 n memo)); } return memo[m][n]; } function minOperations(s1 s2){ const m = s1.length; const n = s2.length; // Initialize the memoization array with -1 (indicating // uncalculated values) const memo = Array.from({length : m + 1} () => Array(n + 1).fill(-1)); // Calculate the length of LCS for s1[0..m-1] and // s2[0..n-1] const len = lcs(s1 s2 m n memo); // Characters to delete from s1 const minDeletions = m - len; // Characters to insert into s1 const minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } const s1 = 'AGGTAB'; const s2 = 'GXTXAYB'; const res = minOperations(s1 s2); console.log(res);
Izlaz
5
Korištenje DP-a odozdo prema gore (tabulacija) - O(n^2) vremena i O(n^2) prostora
C++Pristup je sličan prethodni samo umjesto da raščlanimo problem rekurzivno mi iterativno sastavite rješenje izračunavanjem u odozdo prema gore način. Održavamo a 2D dp[][] tablica tako da dp[i][j] pohranjuje Najduži zajednički podslijed (LCS) za podproblem(i j) .
Ovaj pristup je sličan pronalasku LCS na način odozdo prema gore .
// C++ program to find the minimum of insertion and deletion // using tabulation. #include #include using namespace std; int lcs(string &s1 string &s2) { int m = s1.size(); int n = s2.size(); // Initializing a matrix of size (m+1)*(n+1) vector<vector<int>> dp(m + 1 vector<int>(n + 1 0)); // Building dp[m+1][n+1] in bottom-up fashion for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (s1[i - 1] == s2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1; else dp[i][j] = max(dp[i - 1][j] dp[i][j - 1]); } } // dp[m][n] contains length of LCS for s1[0..m-1] // and s2[0..n-1] return dp[m][n]; } int minOperations(string s1 string s2) { int m = s1.size(); int n = s2.size(); // the length of the LCS for // s1[0..m-1] and s2[0..n-1] int len = lcs(s1 s2); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed int total = minDeletions + minInsertions; return total; } int main() { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); cout << res; return 0; }
Java // Java program to find the minimum of insertion and // deletion using tabulation. class GfG { static int lcs(String s1 String s2) { int m = s1.length(); int n = s2.length(); // Initializing a matrix of size (m+1)*(n+1) int[][] dp = new int[m + 1][n + 1]; // Building dp[m+1][n+1] in bottom-up fashion for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (s1.charAt(i - 1) == s2.charAt(j - 1)) dp[i][j] = dp[i - 1][j - 1] + 1; else dp[i][j] = Math.max(dp[i - 1][j] dp[i][j - 1]); } } // dp[m][n] contains length of LCS for s1[0..m-1] // and s2[0..n-1] return dp[m][n]; } static int minOperations(String s1 String s2) { int m = s1.length(); int n = s2.length(); // the length of the LCS for s1[0..m-1] and // str2[0..n-1] int len = lcs(s1 s2); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } public static void main(String[] args) { String s1 = 'AGGTAB'; String s2 = 'GXTXAYB'; int res = minOperations(s1 s2); System.out.println(res); } }
Python # Python program to find the minimum of insertion and deletion # using tabulation. def lcs(s1 s2): m = len(s1) n = len(s2) # Initializing a matrix of size (m+1)*(n+1) dp = [[0] * (n + 1) for _ in range(m + 1)] # Building dp[m+1][n+1] in bottom-up fashion for i in range(1 m + 1): for j in range(1 n + 1): if s1[i - 1] == s2[j - 1]: dp[i][j] = dp[i - 1][j - 1] + 1 else: dp[i][j] = max(dp[i - 1][j] dp[i][j - 1]) # dp[m][n] contains length of LCS for # s1[0..m-1] and s2[0..n-1] return dp[m][n] def minOperations(s1 s2): m = len(s1) n = len(s2) # the length of the LCS for # s1[0..m-1] and s2[0..n-1] lengthLcs = lcs(s1 s2) # Characters to delete from s1 minDeletions = m - lengthLcs # Characters to insert into s1 minInsertions = n - lengthLcs # Total operations needed return minDeletions + minInsertions s1 = 'AGGTAB' s2 = 'GXTXAYB' res = minOperations(s1 s2) print(res)
C# // C# program to find the minimum of insertion and deletion // using tabulation. using System; class GfG { static int Lcs(string s1 string s2) { int m = s1.Length; int n = s2.Length; // Initializing a matrix of size (m+1)*(n+1) int[ ] dp = new int[m + 1 n + 1]; // Building dp[m+1][n+1] in bottom-up fashion for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (s1[i - 1] == s2[j - 1]) dp[i j] = dp[i - 1 j - 1] + 1; else dp[i j] = Math.Max(dp[i - 1 j] dp[i j - 1]); } } // dp[m n] contains length of LCS for s1[0..m-1] // and s2[0..n-1] return dp[m n]; } static int minOperations(string s1 string s2) { int m = s1.Length; int n = s2.Length; // the length of the LCS for s1[0..m-1] and // s2[0..n-1] int len = Lcs(s1 s2); // Characters to delete from str1 int minDeletions = m - len; // Characters to insert into str1 int minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } static void Main() { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); Console.WriteLine(res); } }
JavaScript // JavaScript program to find the minimum of insertion and // deletion using tabulation. function lcs(s1 s2) { let m = s1.length; let n = s2.length; // Initializing a matrix of size (m+1)*(n+1) let dp = Array(m + 1).fill().map( () => Array(n + 1).fill(0)); // Building dp[m+1][n+1] in bottom-up fashion for (let i = 1; i <= m; ++i) { for (let j = 1; j <= n; ++j) { if (s1[i - 1] === s2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1; else dp[i][j] = Math.max(dp[i - 1][j] dp[i][j - 1]); } } // dp[m][n] contains length of LCS for s1[0..m-1] and // s2[0..n-1] return dp[m][n]; } function minOperations(s1 s2) { let m = s1.length; let n = s2.length; // the length of the LCS for s1[0..m-1] and s2[0..n-1] let len = lcs(s1 s2); // Characters to delete from s1 let minDeletions = m - len; // Characters to insert into s1 let minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } let s1 = 'AGGTAB'; let s2 = 'GXTXAYB'; let res = minOperations(s1 s2); console.log(res);
Izlaz
5
Korištenje Bottom-Up DP (Space-Optimization) – O(n^2) vremena i O(n) prostora
C++U prethodnom pristupu najduži zajednički podniz (LCS) koristi algoritam O(n * n) prostor za spremanje cijelog dp tablica . Međutim, budući da svaka vrijednost u dp[i][j ] ovisi samo o trenutni red i prethodni red ne trebamo pohraniti cijelu tablicu. To se može optimizirati pohranjivanjem samo trenutnog i prethodnih redaka. Za više detalja pogledajte Prostorno optimizirano rješenje LCS-a .
// C++ program to find the minimum of insertion and deletion // using space optimized. #include using namespace std; int lcs(string &s1 string &s2) { int m = s1.length() n = s2.length(); vector<vector<int>> dp(2 vector<int>(n + 1)); for (int i = 0; i <= m; i++) { // Compute current binary index. If i is even // then curr = 0 else 1 bool curr = i & 1; for (int j = 0; j <= n; j++) { // Initialize first row and first column with 0 if (i == 0 || j == 0) dp[curr][j] = 0; else if (s1[i - 1] == s2[j - 1]) dp[curr][j] = dp[1 - curr][j - 1] + 1; else dp[curr][j] = max(dp[1 - curr][j] dp[curr][j - 1]); } } return dp[m & 1][n]; } int minOperations(string s1 string s2) { int m = s1.size(); int n = s2.size(); // the length of the LCS for s1[0..m-1] and s2[0..n-1] int len = lcs(s1 s2); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed int total = minDeletions + minInsertions; return total; } int main() { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); cout << res; return 0; }
Java // Java program to find the minimum of insertion and // deletion using space optimized. class GfG { static int lcs(String s1 String s2) { int m = s1.length(); int n = s2.length(); // Initializing a 2D array with size (2) x (n + 1) int[][] dp = new int[2][n + 1]; for (int i = 0; i <= m; i++) { // Compute current binary index. If i is even // then curr = 0 else 1 int curr = i % 2; for (int j = 0; j <= n; j++) { // Initialize first row and first column // with 0 if (i == 0 || j == 0) dp[curr][j] = 0; else if (s1.charAt(i - 1) == s2.charAt(j - 1)) dp[curr][j] = dp[1 - curr][j - 1] + 1; else dp[curr][j] = Math.max(dp[1 - curr][j] dp[curr][j - 1]); } } return dp[m % 2][n]; } static int minOperations(String s1 String s2) { int m = s1.length(); int n = s2.length(); // the length of the LCS for s1[0..m-1] and // s2[0..n-1] int len = lcs(s1 s2); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } public static void main(String[] args) { String s1 = 'AGGTAB'; String s2 = 'GXTXAYB'; int res = minOperations(s1 s2); System.out.println(res); } }
Python # Python program to find the minimum of insertion and deletion # using space optimized. def lcs(s1 s2): m = len(s1) n = len(s2) # Initializing a matrix of size (2)*(n+1) dp = [[0] * (n + 1) for _ in range(2)] for i in range(m + 1): # Compute current binary index. If i is even # then curr = 0 else 1 curr = i % 2 for j in range(n + 1): # Initialize first row and first column with 0 if i == 0 or j == 0: dp[curr][j] = 0 # If the last characters of both substrings match elif s1[i - 1] == s2[j - 1]: dp[curr][j] = dp[1 - curr][j - 1] + 1 # If the last characters do not match # find the maximum LCS length by: # 1. Excluding the last character of s1 # 2. Excluding the last character of s2 else: dp[curr][j] = max(dp[1 - curr][j] dp[curr][j - 1]) # dp[m & 1][n] contains length of LCS for s1[0..m-1] and s2[0..n-1] return dp[m % 2][n] def minOperations(s1 s2): m = len(s1) n = len(s2) # the length of the LCS for s1[0..m-1] and s2[0..n-1] length = lcs(s1 s2) # Characters to delete from s1 minDeletions = m - length # Characters to insert into s1 minInsertions = n - length # Total operations needed return minDeletions + minInsertions s1 = 'AGGTAB' s2 = 'GXTXAYB' res = minOperations(s1 s2) print(res)
C# // C# program to find the minimum of insertion and deletion // using space optimized. using System; class GfG { static int lcs(string s1 string s2) { int m = s1.Length; int n = s2.Length; // Initializing a matrix of size (2)*(n+1) int[][] dp = new int[2][]; dp[0] = new int[n + 1]; dp[1] = new int[n + 1]; for (int i = 0; i <= m; i++) { // Compute current binary index. If i is even // then curr = 0 else 1 int curr = i % 2; for (int j = 0; j <= n; j++) { // Initialize first row and first column // with 0 if (i == 0 || j == 0) dp[curr][j] = 0; // If the last characters of both substrings // match else if (s1[i - 1] == s2[j - 1]) dp[curr][j] = dp[1 - curr][j - 1] + 1; // If the last characters do not match // find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 else dp[curr][j] = Math.Max(dp[1 - curr][j] dp[curr][j - 1]); } } // dp[m & 1][n] contains length of LCS for // s1[0..m-1] and s2[0..n-1] return dp[m % 2][n]; } static int minOperations(string s1 string s2) { int m = s1.Length; int n = s2.Length; // the length of the LCS for s1[0..m-1] and // s2[0..n-1] int length = lcs(s1 s2); // Characters to delete from s1 int minDeletions = m - length; // Characters to insert into s1 int minInsertions = n - length; // Total operations needed return minDeletions + minInsertions; } static void Main(string[] args) { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); Console.WriteLine(res); } }
JavaScript // JavaScript program to find the minimum of insertion and // deletion using space optimized. function lcs(s1 s2) { const m = s1.length; const n = s2.length; // Initializing a matrix of size (2)*(n+1) const dp = Array(2).fill().map(() => Array(n + 1).fill(0)); for (let i = 0; i <= m; i++) { // Compute current binary index. If i is even // then curr = 0 else 1 const curr = i % 2; for (let j = 0; j <= n; j++) { // Initialize first row and first column with 0 if (i === 0 || j === 0) dp[curr][j] = 0; // If the last characters of both substrings // match else if (s1[i - 1] === s2[j - 1]) dp[curr][j] = dp[1 - curr][j - 1] + 1; // If the last characters do not match // find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 else dp[curr][j] = Math.max(dp[1 - curr][j] dp[curr][j - 1]); } } // dp[m & 1][n] contains length of LCS for s1[0..m-1] // and s2[0..n-1] return dp[m % 2][n]; } function minOperations(s1 s2) { const m = s1.length; const n = s2.length; // the length of the LCS for s1[0..m-1] and s2[0..n-1] const length = lcs(s1 s2); // Characters to delete from s1 const minDeletions = m - length; // Characters to insert into s1 const minInsertions = n - length; // Total operations needed return minDeletions + minInsertions; } const s1 = 'AGGTAB'; const s2 = 'GXTXAYB'; const res = minOperations(s1 s2); console.log(res);
Izlaz
5Napravi kviz