logo

Najveći produkt podniza veličine k

Isprobajte na GfG Practice ' title= #practiceLinkDiv { display: none !important; }

Zadan je niz koji se sastoji od n pozitivnih cijelih brojeva i cijelog broja k. Nađite najveći podniz proizvoda veličine k, tj. nađite maksimalni proizvod od k uzastopnih elemenata u nizu gdje je k<= n.
Primjeri:  

    Input:    arr[] = {1 5 9 8 2 4  
1 8 1 2}
k = 6
Output: 4608
The subarray is {9 8 2 4 1 8}
Input: arr[] = {1 5 9 8 2 4 1 8 1 2}
k = 4
Output: 720
The subarray is {5 9 8 2}
Input: arr[] = {2 5 8 1 1 3};
k = 3
Output: 80
The subarray is {2 5 8}
Recommended Practice Najveći proizvod Probajte!

Pristup grubom silom:



Iteriramo preko svih podnizova veličine k koristeći dvije ugniježđene petlje. Vanjska petlja ide od 0 do n-k, a unutarnja petlja ide od i do i+k-1. Izračunavamo umnožak svakog podniza i ažuriramo do sada pronađeni maksimalni umnožak. Na kraju vraćamo maksimalan proizvod.

Evo koraka za gornji pristup:

  1. Inicijalizirajte varijablu maxProduct na INT_MIN koja predstavlja najmanju moguću vrijednost cijelog broja.
  2. Iterirajte sve podnizove veličine k pomoću dvije ugniježđene petlje.
  3. Vanjska petlja ide od 0 do n-k.
  4. Unutarnja petlja ide od i do i+k-1 gdje je i početni indeks podniza.
  5. Izračunajte umnožak tekućeg podniza koristeći unutarnju petlju.
  6. Ako je proizvod veći od maxProduct ažurirajte maxProduct na trenutni proizvod.
  7. Vrati maxProduct kao rezultat.

Ispod je kod gornjeg pristupa:



C++
// C++ program to find the maximum product of a subarray // of size k. #include    using namespace std; // This function returns maximum product of a subarray // of size k in given array arr[0..n-1]. This function // assumes that k is smaller than or equal to n. int findMaxProduct(int arr[] int n int k) {  int maxProduct = INT_MIN;  for (int i = 0; i <= n - k; i++) {  int product = 1;  for (int j = i; j < i + k; j++) {  product *= arr[j];  }  maxProduct = max(maxProduct product);  }  return maxProduct; } // Driver code int main() {  int arr1[] = {1 5 9 8 2 4 1 8 1 2};  int k = 6;  int n = sizeof(arr1)/sizeof(arr1[0]);  cout << findMaxProduct(arr1 n k) << endl;  k = 4;  cout << findMaxProduct(arr1 n k) << endl;  int arr2[] = {2 5 8 1 1 3};  k = 3;  n = sizeof(arr2)/sizeof(arr2[0]);  cout << findMaxProduct(arr2 n k);  return 0; } 
Java
import java.util.Arrays; public class Main {  // This function returns the maximum product of a subarray of size k in the given array  // It assumes that k is smaller than or equal to the length of the array.  static int findMaxProduct(int[] arr int n int k) {  int maxProduct = Integer.MIN_VALUE;  for (int i = 0; i <= n - k; i++) {  int product = 1;  for (int j = i; j < i + k; j++) {  product *= arr[j];  }  maxProduct = Math.max(maxProduct product);  }  return maxProduct;  }  // Driver code  public static void main(String[] args) {  int[] arr1 = {1 5 9 8 2 4 1 8 1 2};  int k = 6;  int n = arr1.length;  System.out.println(findMaxProduct(arr1 n k));  k = 4;  System.out.println(findMaxProduct(arr1 n k));  int[] arr2 = {2 5 8 1 1 3};  k = 3;  n = arr2.length;  System.out.println(findMaxProduct(arr2 n k));  } } 
Python3
# Python Code def find_max_product(arr k): max_product = float('-inf') # Initialize max_product to negative infinity n = len(arr) # Get the length of the input array # Iterate through the array with a window of size k for i in range(n - k + 1): product = 1 # Initialize product to 1 for each subarray for j in range(i i + k): product *= arr[j] # Calculate the product of the subarray max_product = max(max_product product) # Update max_product if necessary return max_product # Return the maximum product of a subarray of size k # Driver code if __name__ == '__main__': arr1 = [1 5 9 8 2 4 1 8 1 2] k = 6 print(find_max_product(arr1 k)) # Output 25920 k = 4 print(find_max_product(arr1 k)) # Output 1728 arr2 = [2 5 8 1 1 3] k = 3 print(find_max_product(arr2 k)) # Output 80 # This code is contributed by guptapratik 
C#
using System; public class GFG {  // This function returns the maximum product of a subarray of size k in the given array  // It assumes that k is smaller than or equal to the length of the array.  static int FindMaxProduct(int[] arr int n int k)  {  int maxProduct = int.MinValue;  for (int i = 0; i <= n - k; i++)  {  int product = 1;  for (int j = i; j < i + k; j++)  {  product *= arr[j];  }  maxProduct = Math.Max(maxProduct product);  }  return maxProduct;  }  // Driver code  public static void Main(string[] args)  {  int[] arr1 = { 1 5 9 8 2 4 1 8 1 2 };  int k = 6;  int n = arr1.Length;  Console.WriteLine(FindMaxProduct(arr1 n k));  k = 4;  Console.WriteLine(FindMaxProduct(arr1 n k));  int[] arr2 = { 2 5 8 1 1 3 };  k = 3;  n = arr2.Length;  Console.WriteLine(FindMaxProduct(arr2 n k));  } } 
JavaScript
// This function returns the maximum product of a subarray of size k in the given array // It assumes that k is smaller than or equal to the length of the array. function findMaxProduct(arr k) {  let maxProduct = Number.MIN_VALUE;  const n = arr.length;  for (let i = 0; i <= n - k; i++) {  let product = 1;  for (let j = i; j < i + k; j++) {  product *= arr[j];  }  maxProduct = Math.max(maxProduct product);  }  return maxProduct; } // Driver code const arr1 = [1 5 9 8 2 4 1 8 1 2]; let k = 6; console.log(findMaxProduct(arr1 k)); k = 4; console.log(findMaxProduct(arr1 k)); const arr2 = [2 5 8 1 1 3]; k = 3; console.log(findMaxProduct(arr2 k)); 

Izlaz
4608 720 80

Vremenska složenost: O(n*k) gdje je n duljina ulaznog niza, a k veličina podniza za koji nalazimo maksimalni produkt.
Pomoćni prostor: O(1) jer koristimo samo stalnu količinu dodatnog prostora za pohranjivanje maksimalnog umnoška i umnoška trenutnog podniza.

Metoda 2 (učinkovita: O(n))  
Možemo ga riješiti u O(n) korištenjem činjenice da se umnožak podniza veličine k može izračunati za O(1) vremena ako kod nas imamo dostupan umnožak prethodnog podniza. 
 

curr_product = (prev_product / arr[i-1]) * arr[i + k -1]  
prev_product : Product of subarray of size k beginning
with arr[i-1]
curr_product : Product of subarray of size k beginning
with arr[i]


Na ovaj način možemo izračunati produkt podniza maksimalne veličine k u samo jednom obilasku. Ispod je C++ implementacija ideje.



C++
// C++ program to find the maximum product of a subarray // of size k. #include    using namespace std; // This function returns maximum product of a subarray // of size k in given array arr[0..n-1]. This function // assumes that k is smaller than or equal to n. int findMaxProduct(int arr[] int n int k) {  // Initialize the MaxProduct to 1 as all elements  // in the array are positive  int MaxProduct = 1;  for (int i=0; i<k; i++)  MaxProduct *= arr[i];  int prev_product = MaxProduct;  // Consider every product beginning with arr[i]  // where i varies from 1 to n-k-1  for (int i=1; i<=n-k; i++)  {  int curr_product = (prev_product/arr[i-1]) *  arr[i+k-1];  MaxProduct = max(MaxProduct curr_product);  prev_product = curr_product;  }  // Return the maximum product found  return MaxProduct; } // Driver code int main() {  int arr1[] = {1 5 9 8 2 4 1 8 1 2};  int k = 6;  int n = sizeof(arr1)/sizeof(arr1[0]);  cout << findMaxProduct(arr1 n k) << endl;  k = 4;  cout << findMaxProduct(arr1 n k) << endl;  int arr2[] = {2 5 8 1 1 3};  k = 3;  n = sizeof(arr2)/sizeof(arr2[0]);  cout << findMaxProduct(arr2 n k);  return 0; } 
Java
// Java program to find the maximum product of a subarray // of size k import java.io.*; import java.util.*; class GFG  {  // Function returns maximum product of a subarray  // of size k in given array arr[0..n-1]. This function  // assumes that k is smaller than or equal to n.  static int findMaxProduct(int arr[] int n int k)  {  // Initialize the MaxProduct to 1 as all elements  // in the array are positive  int MaxProduct = 1;  for (int i=0; i<k; i++)  MaxProduct *= arr[i];    int prev_product = MaxProduct;    // Consider every product beginning with arr[i]  // where i varies from 1 to n-k-1  for (int i=1; i<=n-k; i++)  {  int curr_product = (prev_product/arr[i-1]) *  arr[i+k-1];  MaxProduct = Math.max(MaxProduct curr_product);  prev_product = curr_product;  }    // Return the maximum product found  return MaxProduct;  }    // driver program  public static void main (String[] args)   {  int arr1[] = {1 5 9 8 2 4 1 8 1 2};  int k = 6;  int n = arr1.length;  System.out.println(findMaxProduct(arr1 n k));    k = 4;  System.out.println(findMaxProduct(arr1 n k));    int arr2[] = {2 5 8 1 1 3};  k = 3;  n = arr2.length;  System.out.println(findMaxProduct(arr2 n k));  } } // This code is contributed by Pramod Kumar 
Python3
# Python 3 program to find the maximum  # product of a subarray of size k. # This function returns maximum product  # of a subarray of size k in given array # arr[0..n-1]. This function assumes  # that k is smaller than or equal to n. def findMaxProduct(arr n k) : # Initialize the MaxProduct to 1  # as all elements in the array  # are positive MaxProduct = 1 for i in range(0 k) : MaxProduct = MaxProduct * arr[i] prev_product = MaxProduct # Consider every product beginning # with arr[i] where i varies from # 1 to n-k-1 for i in range(1 n - k + 1) : curr_product = (prev_product // arr[i-1]) * arr[i+k-1] MaxProduct = max(MaxProduct curr_product) prev_product = curr_product # Return the maximum product found return MaxProduct # Driver code arr1 = [1 5 9 8 2 4 1 8 1 2] k = 6 n = len(arr1) print (findMaxProduct(arr1 n k) ) k = 4 print (findMaxProduct(arr1 n k)) arr2 = [2 5 8 1 1 3] k = 3 n = len(arr2) print(findMaxProduct(arr2 n k)) # This code is contributed by Nikita Tiwari. 
C#
// C# program to find the maximum  // product of a subarray of size k using System; class GFG  {  // Function returns maximum   // product of a subarray of   // size k in given array   // arr[0..n-1]. This function   // assumes that k is smaller   // than or equal to n.  static int findMaxProduct(int []arr   int n int k)  {  // Initialize the MaxProduct   // to 1 as all elements  // in the array are positive  int MaxProduct = 1;  for (int i = 0; i < k; i++)  MaxProduct *= arr[i];  int prev_product = MaxProduct;  // Consider every product beginning   // with arr[i] where i varies from   // 1 to n-k-1  for (int i = 1; i <= n - k; i++)  {  int curr_product = (prev_product /   arr[i - 1]) *   arr[i + k - 1];  MaxProduct = Math.Max(MaxProduct   curr_product);  prev_product = curr_product;  }  // Return the maximum  // product found  return MaxProduct;  }    // Driver Code  public static void Main ()   {  int []arr1 = {1 5 9 8 2   4 1 8 1 2};  int k = 6;  int n = arr1.Length;  Console.WriteLine(findMaxProduct(arr1 n k));  k = 4;  Console.WriteLine(findMaxProduct(arr1 n k));  int []arr2 = {2 5 8 1 1 3};  k = 3;  n = arr2.Length;  Console.WriteLine(findMaxProduct(arr2 n k));  } } // This code is contributed by anuj_67. 
JavaScript
<script>  // JavaScript program to find the maximum   // product of a subarray of size k    // Function returns maximum   // product of a subarray of   // size k in given array   // arr[0..n-1]. This function   // assumes that k is smaller   // than or equal to n.  function findMaxProduct(arr n k)  {  // Initialize the MaxProduct   // to 1 as all elements  // in the array are positive  let MaxProduct = 1;  for (let i = 0; i < k; i++)  MaxProduct *= arr[i];    let prev_product = MaxProduct;    // Consider every product beginning   // with arr[i] where i varies from   // 1 to n-k-1  for (let i = 1; i <= n - k; i++)  {  let curr_product =   (prev_product / arr[i - 1]) * arr[i + k - 1];  MaxProduct = Math.max(MaxProduct curr_product);  prev_product = curr_product;  }    // Return the maximum  // product found  return MaxProduct;  }    let arr1 = [1 5 9 8 2 4 1 8 1 2];  let k = 6;  let n = arr1.length;  document.write(findMaxProduct(arr1 n k) + '
'
); k = 4; document.write(findMaxProduct(arr1 n k) + '
'
); let arr2 = [2 5 8 1 1 3]; k = 3; n = arr2.length; document.write(findMaxProduct(arr2 n k) + '
'
); </script>
PHP
 // PHP program to find the maximum  // product of a subarray of size k. // This function returns maximum  // product of a subarray of size  // k in given array arr[0..n-1]. // This function assumes that k  // is smaller than or equal to n. function findMaxProduct( $arr $n $k) { // Initialize the MaxProduct to // 1 as all elements // in the array are positive $MaxProduct = 1; for($i = 0; $i < $k; $i++) $MaxProduct *= $arr[$i]; $prev_product = $MaxProduct; // Consider every product // beginning with arr[i] // where i varies from 1  // to n-k-1 for($i = 1; $i < $n - $k; $i++) { $curr_product = ($prev_product / $arr[$i - 1]) * $arr[$i + $k - 1]; $MaxProduct = max($MaxProduct $curr_product); $prev_product = $curr_product; } // Return the maximum // product found return $MaxProduct; } // Driver code $arr1 = array(1 5 9 8 2 4 1 8 1 2); $k = 6; $n = count($arr1); echo findMaxProduct($arr1 $n $k)'n' ; $k = 4; echo findMaxProduct($arr1 $n $k)'n'; $arr2 = array(2 5 8 1 1 3); $k = 3; $n = count($arr2); echo findMaxProduct($arr2 $n $k); // This code is contributed by anuj_67. ?> 

Izlaz
4608 720 80

Pomoćni prostor: O(1) budući da se ne koristi dodatni prostor.
Ovaj je članak pridonio Ashutosh Kumar .