S obzirom na niz saznajte je li niz k-palindrom ili ne. K-palindrome niz pretvara se u palindrom pri uklanjanju većine k likova iz njega.
Primjeri:
10 ml na unce
Input : String - abcdecba k = 1 Output : Yes String can become palindrome by removing 1 character i.e. either d or e Input : String - abcdeca K = 2 Output : Yes Can become palindrome by removing 2 characters b and e (or b and d). Input : String - acdcb K = 1 Output : No String can not become palindrome by removing only one character.
Preporučena praksa K-palindrom Isprobajte!
Razgovarali smo o DP rješenju u prethodni post gdje smo vidjeli da je problem u osnovi varijacija Uređivanje udaljenosti problem. U ovom postu se raspravlja još jedno zanimljivo DP rješenje.
Ideja je pronaći najdužu palindromsku podređenu podređenu nizu. Ako je razlika između najdužeg palindromskog podređenja i izvornog niza manja nego jednaka k, tada je niz k-palindrom ostalo to nije k-palindrom.
Na primjer najduža palindromska naredba niza ABCDECA je accdca (ili ACECA). Znakovi koji ne doprinose najdužoj palindromskoj podređenju niza trebaju biti uklonjeni kako bi se niz palindrom napravio. Dakle, pri uklanjanju B i D (ili E) iz niza ABCDECA pretvorit će se u palindrom.
Najduža palindromska podređenja niza lako se može pronaći pomoću LCS . Slijedi rješenje u dva koraka za pronalaženje najdužeg palindromskog podređenja koji koristi LCS.
- Okrenite zadani slijed i pohranite obrnuto u drugom nizu, recimo Rev [0..N-1]
- LC -ovi zadanog slijeda i Rev [] bit će najduži palindromski slijed.
Ispod je provedba gore navedene ideje -
// C++ program to find if given string is K-Palindrome // or not #include using namespace std; /* Returns length of LCS for X[0..m-1] Y[0..n-1] */ int lcs( string X string Y int m int n ) { int L[m + 1][n + 1]; /* Following steps build L[m+1][n+1] in bottom up fashion. Note that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { if (i == 0 || j == 0) L[i][j] = 0; else if (X[i - 1] == Y[j - 1]) L[i][j] = L[i - 1][j - 1] + 1; else L[i][j] = max(L[i - 1][j] L[i][j - 1]); } } // L[m][n] contains length of LCS for X and Y return L[m][n]; } // find if given string is K-Palindrome or not bool isKPal(string str int k) { int n = str.length(); // Find reverse of string string revStr = str; reverse(revStr.begin() revStr.end()); // find longest palindromic subsequence of // given string int lps = lcs(str revStr n n); // If the difference between longest palindromic // subsequence and the original string is less // than equal to k then the string is k-palindrome return (n - lps <= k); } // Driver program int main() { string str = 'abcdeca'; int k = 2; isKPal(str k) ? cout << 'Yes' : cout << 'No'; return 0; }
Java // Java program to find if given // String is K-Palindrome or not import java.util.*; import java.io.*; class GFG { /* Returns length of LCS for X[0..m-1] Y[0..n-1] */ static int lcs(String X String Y int m int n) { int L[][] = new int[m + 1][n + 1]; /* Following steps build L[m+1][n+1] in bottom up fashion. Note that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { if (i == 0 || j == 0) { L[i][j] = 0; } else if (X.charAt(i - 1) == Y.charAt(j - 1)) { L[i][j] = L[i - 1][j - 1] + 1; } else { L[i][j] = Math.max(L[i - 1][j] L[i][j - 1]); } } } // L[m][n] contains length // of LCS for X and Y return L[m][n]; } // find if given String is // K-Palindrome or not static boolean isKPal(String str int k) { int n = str.length(); // Find reverse of String StringBuilder revStr = new StringBuilder(str); revStr = revStr.reverse(); // find longest palindromic // subsequence of given String int lps = lcs(str revStr.toString() n n); // If the difference between longest // palindromic subsequence and the // original String is less than equal // to k then the String is k-palindrome return (n - lps <= k); } // Driver code public static void main(String[] args) { String str = 'abcdeca'; int k = 2; if (isKPal(str k)) { System.out.println('Yes'); } else System.out.println('No'); } } // This code is contributed by Rajput-JI
Python3 # Python program to find # if given string is K-Palindrome # or not # Returns length of LCS # for X[0..m-1] Y[0..n-1] def lcs(X Y m n ): L = [[0]*(n+1) for _ in range(m+1)] # Following steps build # L[m+1][n+1] in bottom up # fashion. Note that L[i][j] # contains length of # LCS of X[0..i-1] and Y[0..j-1] for i in range(m+1): for j in range(n+1): if not i or not j: L[i][j] = 0 elif X[i - 1] == Y[j - 1]: L[i][j] = L[i - 1][j - 1] + 1 else: L[i][j] = max(L[i - 1][j] L[i][j - 1]) # L[m][n] contains length # of LCS for X and Y return L[m][n] # find if given string is # K-Palindrome or not def isKPal(string k): n = len(string) # Find reverse of string revStr = string[::-1] # find longest palindromic # subsequence of # given string lps = lcs(string revStr n n) # If the difference between # longest palindromic # subsequence and the original # string is less # than equal to k then # the string is k-palindrome return (n - lps <= k) # Driver program string = 'abcdeca' k = 2 print('Yes' if isKPal(string k) else 'No') # This code is contributed # by Ansu Kumari.
C# // C# program to find if given // String is K-Palindrome or not using System; class GFG { /* Returns length of LCS for X[0..m-1] Y[0..n-1] */ static int lcs(String X String Y int m int n) { int []L = new int[m + 1n + 1]; /* Following steps build L[m+1n+1] in bottom up fashion. Note that L[ij] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { if (i == 0 || j == 0) { L[i j] = 0; } else if (X[i - 1] == Y[j - 1]) { L[i j] = L[i - 1 j - 1] + 1; } else { L[i j] = Math.Max(L[i - 1 j] L[i j - 1]); } } } // L[mn] contains length // of LCS for X and Y return L[m n]; } // find if given String is // K-Palindrome or not static bool isKPal(String str int k) { int n = str.Length; // Find reverse of String str = reverse(str); // find longest palindromic // subsequence of given String int lps = lcs(str str n n); // If the difference between longest // palindromic subsequence and the // original String is less than equal // to k then the String is k-palindrome return (n - lps <= k); } static String reverse(String input) { char[] temparray = input.ToCharArray(); int left right = 0; right = temparray.Length - 1; for (left = 0; left < right; left++ right--) { // Swap values of left and right char temp = temparray[left]; temparray[left] = temparray[right]; temparray[right] = temp; } return String.Join(''temparray); } // Driver code public static void Main(String[] args) { String str = 'abcdeca'; int k = 2; if (isKPal(str k)) { Console.WriteLine('Yes'); } else Console.WriteLine('No'); } } // This code is contributed by PrinciRaj1992
JavaScript <script> // JavaScript program to find // if given string is K-Palindrome // or not // Returns length of LCS // for X[0..m-1] Y[0..n-1] function lcs(X Y m n ){ let L = new Array(m+1); for(let i=0;i<m+1;i++){ L[i] = new Array(n+1).fill(0); } // Following steps build // L[m+1][n+1] in bottom up // fashion. Note that L[i][j] // contains length of // LCS of X[0..i-1] and Y[0..j-1] for(let i = 0; i < m + 1; i++) { for(let j = 0; j < n + 1; j++) { if(!i || !j) L[i][j] = 0 else if(X[i - 1] == Y[j - 1]) L[i][j] = L[i - 1][j - 1] + 1 else L[i][j] = Math.max(L[i - 1][j] L[i][j - 1]) } } // L[m][n] contains length // of LCS for X and Y return L[m][n] } // find if given string is // K-Palindrome or not function isKPal(string k){ let n = string.length // Find reverse of string let revStr = string.split('').reverse().join('') // find longest palindromic // subsequence of // given string let lps = lcs(string revStr n n) // If the difference between // longest palindromic // subsequence and the original // string is less // than equal to k then // the string is k-palindrome return (n - lps <= k) } // Driver program let string = 'abcdeca' let k = 2 document.write(isKPal(string k)?'Yes' : 'No') // This code is contributed by shinjanpatra </script>
Izlaz
Yes
Vremenska složenost gornje otopine je O (n2).
Pomoćni prostor koristi program je O (n2). Može se dalje smanjiti na O (n) pomoću Space optimizirano rješenje LCS -a .
Zahvaljujući Ravan ste suzili za sugerirajući gore rješenje.