S obzirom na mnoge intervale kao raspone i našu poziciju. Moramo pronaći minimalnu udaljenost koju treba prijeći da bismo došli do takve točke koja pokriva sve intervale odjednom.
Primjeri:
Input : Intervals = [(0 7) (2 14) (4 6)] Position = 3 Output : 1 We can reach position 4 by travelling distance 1 at which all intervals will be covered. So answer will be 1 Input : Intervals = [(1 2) (2 3) (3 4)] Position = 2 Output : -1 It is not possible to cover all intervals at once at any point Input : Intervals = [(1 2) (2 3) (1 4)] Position = 2 Output : 0 All Intervals are covered at current position only so no need travel and answer will be 0 All above examples are shown in below diagram.

Ovaj problem možemo riješiti koncentriranjem samo na krajnje točke. Budući da je zahtjev da se pokriju svi intervali dostizanjem točke, svi intervali moraju dijeliti točku da bi odgovor postojao. Čak se i interval s krajnjom lijevom krajnjom točkom mora preklapati s krajnjom desnom početnom točkom intervala.
Prvo nalazimo krajnju desnu početnu točku i najlijevu krajnju točku iz svih intervala. Zatim možemo usporediti našu poziciju s ovim točkama kako bismo dobili rezultat koji je objašnjen u nastavku:
- Ako je krajnja desna početna točka desno od krajnje lijeve krajnje točke, tada nije moguće pokriti sve intervale istovremeno. (kao u primjeru 2)
- Ako je naš položaj u sredini između krajnjeg desnog početka i krajnjeg lijevog kraja tada nema potrebe za putovanjem i svi će intervali biti pokriveni samo trenutnim položajem (kao u primjeru 3)
- Ako je naš položaj lijevo do obje točke, tada moramo putovati do krajnje desne početne točke, a ako je naš položaj desno do obje točke, tada trebamo putovati do krajnje lijeve krajnje točke.
Pogledajte gornji dijagram da biste razumjeli ove slučajeve. Kao što je u prvom primjeru krajnji desni početak 4, a krajnji lijevi kraj 6, tako da moramo doći do 4 od trenutne pozicije 3 da pokrijemo sve intervale.
Za bolje razumijevanje pogledajte kod u nastavku.
C++// C++ program to find minimum distance to // travel to cover all intervals #include using namespace std; // structure to store an interval struct Interval { int start end; Interval(int start int end) : start(start) end(end) {} }; // Method returns minimum distance to travel // to cover all intervals int minDistanceToCoverIntervals(Interval intervals[] int N int x) { int rightMostStart = INT_MIN; int leftMostEnd = INT_MAX; // looping over all intervals to get right most // start and left most end for (int i = 0; i < N; i++) { if (rightMostStart < intervals[i].start) rightMostStart = intervals[i].start; if (leftMostEnd > intervals[i].end) leftMostEnd = intervals[i].end; } int res; /* if rightmost start > leftmost end then all intervals are not aligned and it is not possible to cover all of them */ if (rightMostStart > leftMostEnd) res = -1; // if x is in between rightmoststart and // leftmostend then no need to travel any distance else if (rightMostStart <= x && x <= leftMostEnd) res = 0; // choose minimum according to current position x else res = (x < rightMostStart) ? (rightMostStart - x) : (x - leftMostEnd); return res; } // Driver code to test above methods int main() { int x = 3; Interval intervals[] = {{0 7} {2 14} {4 6}}; int N = sizeof(intervals) / sizeof(intervals[0]); int res = minDistanceToCoverIntervals(intervals N x); if (res == -1) cout << 'Not Possible to cover all intervalsn'; else cout << res << endl; }
Java // Java program to find minimum distance // to travel to cover all intervals import java.util.*; class GFG{ // Structure to store an interval static class Interval { int start end; Interval(int start int end) { this.start = start; this.end = end; } }; // Method returns minimum distance to // travel to cover all intervals static int minDistanceToCoverIntervals(Interval intervals[] int N int x) { int rightMostStart = Integer.MIN_VALUE; int leftMostEnd = Integer.MAX_VALUE; // Looping over all intervals to get // right most start and left most end for(int i = 0; i < N; i++) { if (rightMostStart < intervals[i].start) rightMostStart = intervals[i].start; if (leftMostEnd > intervals[i].end) leftMostEnd = intervals[i].end; } int res; // If rightmost start > leftmost end then // all intervals are not aligned and it // is not possible to cover all of them if (rightMostStart > leftMostEnd) res = -1; // If x is in between rightmoststart and // leftmostend then no need to travel // any distance else if (rightMostStart <= x && x <= leftMostEnd) res = 0; // Choose minimum according to // current position x else res = (x < rightMostStart) ? (rightMostStart - x) : (x - leftMostEnd); return res; } // Driver code public static void main(String[] args) { int x = 3; Interval []intervals = { new Interval(0 7) new Interval(2 14) new Interval(4 6) }; int N = intervals.length; int res = minDistanceToCoverIntervals( intervals N x); if (res == -1) System.out.print('Not Possible to ' + 'cover all intervalsn'); else System.out.print(res + 'n'); } } // This code is contributed by Rajput-Ji
Python3 # Python program to find minimum distance to # travel to cover all intervals # Method returns minimum distance to travel # to cover all intervals def minDistanceToCoverIntervals(Intervals N x): rightMostStart = Intervals[0][0] leftMostStart = Intervals[0][1] # looping over all intervals to get right most # start and left most end for curr in Intervals: if rightMostStart < curr[0]: rightMostStart = curr[0] if leftMostStart > curr[1]: leftMostStart = curr[1] # if rightmost start > leftmost end then all # intervals are not aligned and it is not # possible to cover all of them if rightMostStart > leftMostStart: res = -1 # if x is in between rightmoststart and # leftmostend then no need to travel any distance else if rightMostStart <= x and x <= leftMostStart: res = 0 # choose minimum according to current position x else: res = rightMostStart-x if x < rightMostStart else x-leftMostStart return res # Driver code to test above methods Intervals = [[0 7] [2 14] [4 6]] N = len(Intervals) x = 3 res = minDistanceToCoverIntervals(Intervals N x) if res == -1: print('Not Possible to cover all intervals') else: print(res) # This code is contributed by rj13to.
C# // C# program to find minimum distance // to travel to cover all intervals using System; class GFG{ // Structure to store an interval public class Interval { public int start end; public Interval(int start int end) { this.start = start; this.end = end; } }; // Method returns minimum distance to // travel to cover all intervals static int minDistanceToCoverIntervals( Interval []intervals int N int x) { int rightMostStart = int.MinValue; int leftMostEnd = int.MaxValue; // Looping over all intervals to get // right most start and left most end for(int i = 0; i < N; i++) { if (rightMostStart < intervals[i].start) rightMostStart = intervals[i].start; if (leftMostEnd > intervals[i].end) leftMostEnd = intervals[i].end; } int res; // If rightmost start > leftmost end then // all intervals are not aligned and it // is not possible to cover all of them if (rightMostStart > leftMostEnd) res = -1; // If x is in between rightmoststart and // leftmostend then no need to travel // any distance else if (rightMostStart <= x && x <= leftMostEnd) res = 0; // Choose minimum according to // current position x else res = (x < rightMostStart) ? (rightMostStart - x) : (x - leftMostEnd); return res; } // Driver code public static void Main(String[] args) { int x = 3; Interval []intervals = { new Interval(0 7) new Interval(2 14) new Interval(4 6) }; int N = intervals.Length; int res = minDistanceToCoverIntervals( intervals N x); if (res == -1) Console.Write('Not Possible to ' + 'cover all intervalsn'); else Console.Write(res + 'n'); } } // This code is contributed by shikhasingrajput
JavaScript <script> // JavaScript program to find minimum distance to // travel to cover all intervals // Method returns minimum distance to travel // to cover all intervals function minDistanceToCoverIntervals(Intervals N x){ let rightMostStart = Intervals[0][0] let leftMostStart = Intervals[0][1] // looping over all intervals to get right most // start and left most end for(let curr of Intervals){ if(rightMostStart < curr[0]) rightMostStart = curr[0] if(leftMostStart > curr[1]) leftMostStart = curr[1] } let res; // if rightmost start > leftmost end then all // intervals are not aligned and it is not // possible to cover all of them if(rightMostStart > leftMostStart) res = -1 // if x is in between rightmoststart and // leftmostend then no need to travel any distance else if(rightMostStart <= x && x <= leftMostStart) res = 0 // choose minimum according to current position x else res = (x < rightMostStart)?rightMostStart-x : x-leftMostStart return res } // Driver code to test above methods let Intervals = [[0 7] [2 14] [4 6]] let N = Intervals.length let x = 3 let res = minDistanceToCoverIntervals(Intervals N x) if(res == -1) document.write('Not Possible to cover all intervals''
') else document.write(res) // This code is contributed by shinjanpatra </script>
Izlaz:
1
Vremenska složenost: NA)
Pomoćni prostor: NA)