logo

Neka svi elementi niza budu jednaki uz minimalne troškove

S obzirom na niz veličine n zadatak je da se vrijednost svih elemenata izjednači sa minimalni trošak . Trošak promjene vrijednosti iz x u y je abs(x - y).

Primjeri:  

Ulazni: arr[] = [1 100 101]
Izlaz : 100
Obrazloženje: Sve njegove vrijednosti možemo promijeniti na 100 uz minimalne troškove
|1 - 100| + |100 - 100| + |101 - 100| = 100



Ulazni : arr[] = [4 6]
Izlaz : 2
Obrazloženje: Sve njegove vrijednosti možemo promijeniti na 5 uz minimalne troškove
|4 - 5| + |5 - 6| = 2

Ulazni: arr[] = [5 5 5 5]
Izlaz:
Obrazloženje: Sve su vrijednosti već jednake.

[Naivni pristup] Korištenje 2 ugniježđene petlje - O(n^2) vremena i O(1) prostora

Imajte na umu da naš odgovor uvijek može biti jedna od vrijednosti polja. Čak iu drugom primjeru iznad možemo alternativno napraviti oba kao 4 ili oba kao 6 po istoj cijeni.
Ideja je razmotriti svaku vrijednost u nizu kao potencijalnu ciljanu vrijednost, a zatim izračunati ukupnu cijenu pretvaranja svih ostalih elemenata u tu ciljanu vrijednost. Provjerom svih mogućih ciljanih vrijednosti možemo pronaći onu koja rezultira minimalnim ukupnim troškom konverzije.

C++
// C++ program to Make all array  // elements equal with minimum cost #include    using namespace std; // Function which finds the minimum  // cost to make array elements equal int minCost(vector<int> &arr) {  int n = arr.size();  int ans = INT_MAX;    // Try each element as the target value  for (int i = 0; i < n; i++) {  int currentCost = 0;    // Calculate cost of making all   // elements equal to arr[i]  for (int j = 0; j < n; j++) {  currentCost += abs(arr[j] - arr[i]);  }    // Update minimum cost if current cost is lower  ans = min(ans currentCost);  }    return ans; } int main() {  vector<int> arr = {1 100 101};  cout << minCost(arr) << endl;    return 0; } 
Java
// Java program to Make all array  // elements equal with minimum cost import java.util.*; class GfG {  // Function which finds the minimum   // cost to make array elements equal  static int minCost(int[] arr) {  int n = arr.length;  int ans = Integer.MAX_VALUE;  // Try each element as the target value  for (int i = 0; i < n; i++) {  int currentCost = 0;  // Calculate cost of making all   // elements equal to arr[i]  for (int j = 0; j < n; j++) {  currentCost += Math.abs(arr[j] - arr[i]);  }  // Update minimum cost if current cost is lower  ans = Math.min(ans currentCost);  }  return ans;  }  public static void main(String[] args) {  int[] arr = {1 100 101};  System.out.println(minCost(arr));  } } 
Python
# Python program to Make all array  # elements equal with minimum cost # Function which finds the minimum  # cost to make array elements equal def minCost(arr): n = len(arr) ans = float('inf') # Try each element as the target value for i in range(n): currentCost = 0 # Calculate cost of making all  # elements equal to arr[i] for j in range(n): currentCost += abs(arr[j] - arr[i]) # Update minimum cost if current cost is lower ans = min(ans currentCost) return ans if __name__ == '__main__': arr = [1 100 101] print(minCost(arr)) 
C#
// C# program to Make all array  // elements equal with minimum cost using System; class GfG {  // Function which finds the minimum   // cost to make array elements equal  static int minCost(int[] arr) {  int n = arr.Length;  int ans = int.MaxValue;  // Try each element as the target value  for (int i = 0; i < n; i++) {  int currentCost = 0;  // Calculate cost of making all   // elements equal to arr[i]  for (int j = 0; j < n; j++) {  currentCost += Math.Abs(arr[j] - arr[i]);  }  // Update minimum cost if current cost is lower  ans = Math.Min(ans currentCost);  }  return ans;  }  static void Main() {  int[] arr = {1 100 101};  Console.WriteLine(minCost(arr));  } } 
JavaScript
// JavaScript program to Make all array  // elements equal with minimum cost // Function which finds the minimum  // cost to make array elements equal function minCost(arr) {  let n = arr.length;  let ans = Number.MAX_SAFE_INTEGER;  // Try each element as the target value  for (let i = 0; i < n; i++) {  let currentCost = 0;  // Calculate cost of making all   // elements equal to arr[i]  for (let j = 0; j < n; j++) {  currentCost += Math.abs(arr[j] - arr[i]);  }  // Update minimum cost if current cost is lower  ans = Math.min(ans currentCost);  }  return ans; } let arr = [1 100 101]; console.log(minCost(arr)); 

Izlaz
100 

[Očekivani pristup - 1] Korištenje binarnog pretraživanja - O(n Log (Raspon)) vrijeme i O(1) razmak

Ideja je koristiti binarno pretraživanje za učinkovito pronalaženje optimalne vrijednosti u koju bi se svi elementi niza trebali pretvoriti. Budući da funkcija ukupnog troška tvori konveksnu krivulju (prvo opadajuću, a zatim rastuću) u rasponu mogućih vrijednosti, možemo koristiti binarno pretraživanje da lociramo minimalnu točku ove krivulje uspoređujući trošak na srednjoj točki s troškom na srednjoj točki minus jedan koji nam govori u kojem smjeru dalje tražiti.

Pristup korak po korak:

  1. Pronađite minimalne i maksimalne vrijednosti u nizu kako biste uspostavili raspon pretraživanja
  2. Koristite binarno pretraživanje između minimalnih i maksimalnih vrijednosti kako biste pronašli optimalnu ciljnu vrijednost
  3. Za svaku probnu vrijednost izračunajte ukupnu cijenu pretvaranja svih elemenata niza u tu vrijednost
  4. Usporedite cijenu na trenutnoj srednjoj točki s cijenom na srednjoj točki minus jedan kako biste odredili smjer pretraživanja
  5. Nastavite sa sužavanjem raspona pretraživanja dok ne pronađete konfiguraciju minimalnog troška
C++
// C++ program to Make all array  // elements equal with minimum cost #include    using namespace std; // Function to find the cost of changing // array values to mid. int findCost(vector<int> &arr int mid) {  int n = arr.size();  int ans = 0;  for (int i=0; i<n; i++) {  ans += abs(arr[i] - mid);  }  return ans; } // Function which finds the minimum cost  // to make array elements equal. int minCost(vector<int> &arr) {  int n = arr.size();  int mini = INT_MAX maxi = INT_MIN;    // Find the minimum and maximum value.  for (int i=0; i<n; i++) {  mini = min(mini arr[i]);  maxi = max(maxi arr[i]);  }    int s = mini e = maxi;  int ans = INT_MAX;    while (s <= e) {  int mid = s + (e-s)/2;    int cost1 = findCost(arr mid);  int cost2 = findCost(arr mid-1);    if (cost1 < cost2) {  ans = cost1;  s = mid + 1;  }  else {  e = mid - 1;  }  }    return ans; } int main() {  vector<int> arr = {1 100 101};  cout << minCost(arr);    return 0; } 
Java
// Java program to Make all array  // elements equal with minimum cost import java.util.*; class GfG {  // Function to find the cost of changing  // array values to mid.  static int findCost(int[] arr int mid) {  int n = arr.length;  int ans = 0;  for (int i = 0; i < n; i++) {  ans += Math.abs(arr[i] - mid);  }  return ans;  }  // Function which finds the minimum cost   // to make array elements equal.  static int minCost(int[] arr) {  int n = arr.length;  int mini = Integer.MAX_VALUE maxi = Integer.MIN_VALUE;  // Find the minimum and maximum value.  for (int i = 0; i < n; i++) {  mini = Math.min(mini arr[i]);  maxi = Math.max(maxi arr[i]);  }  int s = mini e = maxi;  int ans = Integer.MAX_VALUE;  while (s <= e) {  int mid = s + (e - s) / 2;  int cost1 = findCost(arr mid);  int cost2 = findCost(arr mid - 1);  if (cost1 < cost2) {  ans = cost1;  s = mid + 1;  } else {  e = mid - 1;  }  }  return ans;  }  public static void main(String[] args) {  int[] arr = {1 100 101};  System.out.println(minCost(arr));  } } 
Python
# Python program to Make all array  # elements equal with minimum cost # Function to find the cost of changing # array values to mid. def findCost(arr mid): n = len(arr) ans = 0 for i in range(n): ans += abs(arr[i] - mid) return ans # Function which finds the minimum cost  # to make array elements equal. def minCost(arr): n = len(arr) mini = float('inf') maxi = float('-inf') # Find the minimum and maximum value. for i in range(n): mini = min(mini arr[i]) maxi = max(maxi arr[i]) s = mini e = maxi ans = float('inf') while s <= e: mid = s + (e - s) // 2 cost1 = findCost(arr mid) cost2 = findCost(arr mid - 1) if cost1 < cost2: ans = cost1 s = mid + 1 else: e = mid - 1 return ans if __name__ == '__main__': arr = [1 100 101] print(minCost(arr)) 
C#
// C# program to Make all array  // elements equal with minimum cost using System; class GfG {  // Function to find the cost of changing  // array values to mid.  static int findCost(int[] arr int mid) {  int n = arr.Length;  int ans = 0;  for (int i = 0; i < n; i++) {  ans += Math.Abs(arr[i] - mid);  }  return ans;  }  // Function which finds the minimum cost   // to make array elements equal.  static int minCost(int[] arr) {  int n = arr.Length;  int mini = int.MaxValue maxi = int.MinValue;  // Find the minimum and maximum value.  for (int i = 0; i < n; i++) {  mini = Math.Min(mini arr[i]);  maxi = Math.Max(maxi arr[i]);  }  int s = mini e = maxi;  int ans = int.MaxValue;  while (s <= e) {  int mid = s + (e - s) / 2;  int cost1 = findCost(arr mid);  int cost2 = findCost(arr mid - 1);  if (cost1 < cost2) {  ans = cost1;  s = mid + 1;  } else {  e = mid - 1;  }  }  return ans;  }  static void Main() {  int[] arr = {1 100 101};  Console.WriteLine(minCost(arr));  } } 
JavaScript
// JavaScript program to Make all array  // elements equal with minimum cost // Function to find the cost of changing // array values to mid. function findCost(arr mid) {  let n = arr.length;  let ans = 0;  for (let i = 0; i < n; i++) {  ans += Math.abs(arr[i] - mid);  }  return ans; } // Function which finds the minimum cost  // to make array elements equal. function minCost(arr) {  let n = arr.length;  let mini = Number.MAX_SAFE_INTEGER maxi = Number.MIN_SAFE_INTEGER;  // Find the minimum and maximum value.  for (let i = 0; i < n; i++) {  mini = Math.min(mini arr[i]);  maxi = Math.max(maxi arr[i]);  }  let s = mini e = maxi;  let ans = Number.MAX_SAFE_INTEGER;  while (s <= e) {  let mid = Math.floor(s + (e - s) / 2);  let cost1 = findCost(arr mid);  let cost2 = findCost(arr mid - 1);  if (cost1 < cost2) {  ans = cost1;  s = mid + 1;  } else {  e = mid - 1;  }  }  return ans; } let arr = [1 100 101]; console.log(minCost(arr)); 

Izlaz
100

[Očekivani pristup - 2] Korištenje sortiranja - O(n Log n) vremena i O(1) prostora

Ideja je pronaći optimalnu vrijednost na koju treba izjednačiti sve elemente koji mora biti jedan od postojećih elemenata niza. Prvo sortiranjem niza, a zatim ponavljanjem kroz svaki element kao potencijalnu ciljanu vrijednost, izračunavamo trošak transformacije svih ostalih elemenata u tu vrijednost učinkovitim praćenjem zbroja elemenata lijevo i desno od trenutne pozicije.

Pristup korak po korak:

  1. Sortirajte polje za obradu elemenata uzlaznim redoslijedom.
  2. Za svaki element kao potencijalnu ciljanu vrijednost izračunajte dva troška: podizanje manjih elemenata i smanjenje većih elemenata.
  3. Pratite lijeve i desne zbrojeve kako biste učinkovito izračunali te troškove u konstantnom vremenu po iteraciji.
    • Dovođenje manjih elemenata košta: (trenutna vrijednost × broj manjih elemenata) - (zbroj manjih elemenata)
    • Troškovi smanjenja većih elemenata: (zbroj većih elemenata) - (trenutna vrijednost × broj većih elemenata)
  4. Usporedite trenutni trošak s minimalnim troškom.
C++
// C++ program to Make all array  // elements equal with minimum cost #include    using namespace std; // Function which finds the minimum cost  // to make array elements equal. int minCost(vector<int> &arr) {  int n = arr.size();  // Sort the array  sort(arr.begin() arr.end());    // Variable to store sum of elements  // to the right side.  int right = 0;  for (int i=0; i<n; i++) {  right += arr[i];  }    int ans = INT_MAX;  int left = 0;    for (int i=0; i<n; i++) {    // Remove the current element from right sum.  right -= arr[i];    // Find cost of incrementing left side elements  int leftCost = i * arr[i] - left;    // Find cost of decrementing right side elements.  int rightCost = right - (n-1-i) * arr[i];    ans = min(ans leftCost + rightCost);    // Add current value to left sum   left += arr[i];  }    return ans; } int main() {  vector<int> arr = {1 100 101};  cout << minCost(arr);    return 0; } 
Java
// Java program to Make all array  // elements equal with minimum cost import java.util.*; class GfG {  // Function which finds the minimum cost   // to make array elements equal.  static int minCost(int[] arr) {  int n = arr.length;  // Sort the array  Arrays.sort(arr);    // Variable to store sum of elements  // to the right side.  int right = 0;  for (int i = 0; i < n; i++) {  right += arr[i];  }  int ans = Integer.MAX_VALUE;  int left = 0;  for (int i = 0; i < n; i++) {  // Remove the current element from right sum.  right -= arr[i];  // Find cost of incrementing left side elements  int leftCost = i * arr[i] - left;  // Find cost of decrementing right side elements.  int rightCost = right - (n - 1 - i) * arr[i];  ans = Math.min(ans leftCost + rightCost);  // Add current value to left sum   left += arr[i];  }  return ans;  }  public static void main(String[] args) {  int[] arr = {1 100 101};  System.out.println(minCost(arr));  } } 
Python
# Python program to Make all array  # elements equal with minimum cost # Function which finds the minimum cost  # to make array elements equal. def minCost(arr): n = len(arr) # Sort the array arr.sort() # Variable to store sum of elements # to the right side. right = sum(arr) ans = float('inf') left = 0 for i in range(n): # Remove the current element from right sum. right -= arr[i] # Find cost of incrementing left side elements leftCost = i * arr[i] - left # Find cost of decrementing right side elements. rightCost = right - (n - 1 - i) * arr[i] ans = min(ans leftCost + rightCost) # Add current value to left sum  left += arr[i] return ans if __name__ == '__main__': arr = [1 100 101] print(minCost(arr)) 
C#
// C# program to Make all array  // elements equal with minimum cost using System; class GfG {  // Function which finds the minimum cost   // to make array elements equal.  static int minCost(int[] arr) {  int n = arr.Length;  // Sort the array  Array.Sort(arr);  // Variable to store sum of elements  // to the right side.  int right = 0;  for (int i = 0; i < n; i++) {  right += arr[i];  }  int ans = int.MaxValue;  int left = 0;  for (int i = 0; i < n; i++) {  // Remove the current element from right sum.  right -= arr[i];  // Find cost of incrementing left side elements  int leftCost = i * arr[i] - left;  // Find cost of decrementing right side elements.  int rightCost = right - (n - 1 - i) * arr[i];  ans = Math.Min(ans leftCost + rightCost);  // Add current value to left sum   left += arr[i];  }  return ans;  }  static void Main() {  int[] arr = {1 100 101};  Console.WriteLine(minCost(arr));  } } 
JavaScript
// JavaScript program to Make all array  // elements equal with minimum cost // Function which finds the minimum cost  // to make array elements equal. function minCost(arr) {  let n = arr.length;  // Sort the array  arr.sort((a b) => a - b);  // Variable to store sum of elements  // to the right side.  let right = 0;  for (let i = 0; i < n; i++) {  right += arr[i];  }  let ans = Number.MAX_SAFE_INTEGER;  let left = 0;  for (let i = 0; i < n; i++) {  // Remove the current element from right sum.  right -= arr[i];  // Find cost of incrementing left side elements  let leftCost = i * arr[i] - left;  // Find cost of decrementing right side elements.  let rightCost = right - (n - 1 - i) * arr[i];  ans = Math.min(ans leftCost + rightCost);  // Add current value to left sum   left += arr[i];  }  return ans; } let arr = [1 100 101]; console.log(minCost(arr)); 

Izlaz
100
Napravi kviz