Zadano je sortirano polje od n ravnomjerno raspoređenih vrijednosti arr[] napišite funkciju za traženje određenog elementa x u nizu.
Linearno pretraživanje pronalazi element za O(n) vremena Skoči Traži potrebno O(n) vremena i Binarno pretraživanje potrebno O(log n) vremena.
Interpolacijsko pretraživanje je poboljšanje u odnosu na Binarno pretraživanje na primjer gdje su vrijednosti u sortiranom nizu ravnomjerno raspoređene. Interpolacija konstruira nove podatkovne točke unutar raspona diskretnog skupa poznatih podatkovnih točaka. Binarno pretraživanje uvijek ide na srednji element radi provjere. S druge strane interpolacijsko pretraživanje može ići na različite lokacije prema vrijednosti ključa koji se pretražuje. Na primjer, ako je vrijednost ključa bliža zadnjem elementu, pretraživanje interpolacije će vjerojatno započeti pretraživanje prema krajnjoj strani.
Za pronalaženje pozicije koju treba pretražiti koristi se sljedeća formula.
// Ideja formule je vratiti višu vrijednost pos
// kada je element koji se traži bliži arr[hi]. I
// manja vrijednost kada je bliže arr[lo]
arr[] ==> Niz gdje se elementi trebaju pretraživati
x ==> Element koji se traži
lo ==> Početni indeks u arr[]
bok ==> Završni indeks u arr[]
nakon = +
Postoji mnogo različitih metoda interpolacije, a jedna je poznata kao linearna interpolacija. Linearna interpolacija uzima dvije podatkovne točke koje pretpostavljamo kao (x1y1) i (x2y2), a formula glasi: u točki (xy).
Ovaj algoritam funkcionira na način na koji tražimo riječ u rječniku. Interpolacijski algoritam pretraživanja poboljšava algoritam binarnog pretraživanja. Formula za pronalaženje vrijednosti je: K = >K je konstanta koja se koristi za sužavanje prostora pretraživanja. U slučaju binarnog pretraživanja vrijednost ove konstante je: K=(niska+visoka)/2.
Formula za pos može se izvesti na sljedeći način.
Let's assume that the elements of the array are linearly distributed.
General equation of line : y = m*x + c.
y is the value in the array and x is its index.
Now putting value of lohi and x in the equation
arr[hi] = m*hi+c ----(1)
arr[lo] = m*lo+c ----(2)
x = m*pos + c ----(3)
m = (arr[hi] - arr[lo] )/ (hi - lo)
subtracting eqxn (2) from (3)
x - arr[lo] = m * (pos - lo)
lo + (x - arr[lo])/m = pos
pos = lo + (x - arr[lo]) *(hi - lo)/(arr[hi] - arr[lo])
Algoritam
Ostatak algoritma interpolacije je isti osim gornje particijske logike.
- 1. korak: U petlji izračunajte vrijednost 'pos' pomoću formule položaja sonde.
- 2. korak: Ako se podudara, vratite indeks stavke i izađite.
- 3. korak: Ako je stavka manja od arr[pos] izračunajte položaj sonde lijevog podniza. Inače izračunajte isto u desnom podnizu.
- Korak 4: Ponavljajte dok se ne pronađe podudaranje ili dok se podniz ne smanji na nulu.
Ispod je implementacija algoritma.
// C++ program to implement interpolation // search with recursion #include using namespace std; // If x is present in arr[0..n-1] then returns // index of it else returns -1. int interpolationSearch(int arr[] int lo int hi int x) { int pos; // Since array is sorted an element present // in array must be in range defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((double)(hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code int main() { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = sizeof(arr) / sizeof(arr[0]); // Element to be searched int x = 18; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) cout << 'Element found at index ' << index; else cout << 'Element not found.'; return 0; } // This code is contributed by equbalzeeshan
C // C program to implement interpolation search // with recursion #include // If x is present in arr[0..n-1] then returns // index of it else returns -1. int interpolationSearch(int arr[] int lo int hi int x) { int pos; // Since array is sorted an element present // in array must be in range defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((double)(hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code int main() { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = sizeof(arr) / sizeof(arr[0]); int x = 18; // Element to be searched int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) printf('Element found at index %d' index); else printf('Element not found.'); return 0; }
Java // Java program to implement interpolation // search with recursion import java.util.*; class GFG { // If x is present in arr[0..n-1] then returns // index of it else returns -1. public static int interpolationSearch(int arr[] int lo int hi int x) { int pos; // Since array is sorted an element // present in array must be in range // defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code public static void main(String[] args) { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = arr.length; // Element to be searched int x = 18; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) System.out.println('Element found at index ' + index); else System.out.println('Element not found.'); } } // This code is contributed by equbalzeeshan
Python # Python3 program to implement # interpolation search # with recursion # If x is present in arr[0..n-1] then # returns index of it else returns -1. def interpolationSearch(arr lo hi x): # Since array is sorted an element present # in array must be in range defined by corner if (lo <= hi and x >= arr[lo] and x <= arr[hi]): # Probing the position with keeping # uniform distribution in mind. pos = lo + ((hi - lo) // (arr[hi] - arr[lo]) * (x - arr[lo])) # Condition of target found if arr[pos] == x: return pos # If x is larger x is in right subarray if arr[pos] < x: return interpolationSearch(arr pos + 1 hi x) # If x is smaller x is in left subarray if arr[pos] > x: return interpolationSearch(arr lo pos - 1 x) return -1 # Driver code # Array of items in which # search will be conducted arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47] n = len(arr) # Element to be searched x = 18 index = interpolationSearch(arr 0 n - 1 x) if index != -1: print('Element found at index' index) else: print('Element not found') # This code is contributed by Hardik Jain
C# // C# program to implement // interpolation search using System; class GFG{ // If x is present in // arr[0..n-1] then // returns index of it // else returns -1. static int interpolationSearch(int []arr int lo int hi int x) { int pos; // Since array is sorted an element // present in array must be in range // defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position // with keeping uniform // distribution in mind. pos = lo + (((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of // target found if(arr[pos] == x) return pos; // If x is larger x is in right sub array if(arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if(arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code public static void Main() { // Array of items on which search will // be conducted. int []arr = new int[]{ 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; // Element to be searched int x = 18; int n = arr.Length; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) Console.WriteLine('Element found at index ' + index); else Console.WriteLine('Element not found.'); } } // This code is contributed by equbalzeeshan
JavaScript <script> // Javascript program to implement Interpolation Search // If x is present in arr[0..n-1] then returns // index of it else returns -1. function interpolationSearch(arr lo hi x){ let pos; // Since array is sorted an element present // in array must be in range defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + Math.floor(((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo]));; // Condition of target found if (arr[pos] == x){ return pos; } // If x is larger x is in right sub array if (arr[pos] < x){ return interpolationSearch(arr pos + 1 hi x); } // If x is smaller x is in left sub array if (arr[pos] > x){ return interpolationSearch(arr lo pos - 1 x); } } return -1; } // Driver Code let arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47]; let n = arr.length; // Element to be searched let x = 18 let index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1){ document.write(`Element found at index ${index}`) }else{ document.write('Element not found'); } // This code is contributed by _saurabh_jaiswal </script>
PHP // PHP program to implement $erpolation search // with recursion // If x is present in arr[0..n-1] then returns // index of it else returns -1. function interpolationSearch($arr $lo $hi $x) { // Since array is sorted an element present // in array must be in range defined by corner if ($lo <= $hi && $x >= $arr[$lo] && $x <= $arr[$hi]) { // Probing the position with keeping // uniform distribution in mind. $pos = (int)($lo + (((double)($hi - $lo) / ($arr[$hi] - $arr[$lo])) * ($x - $arr[$lo]))); // Condition of target found if ($arr[$pos] == $x) return $pos; // If x is larger x is in right sub array if ($arr[$pos] < $x) return interpolationSearch($arr $pos + 1 $hi $x); // If x is smaller x is in left sub array if ($arr[$pos] > $x) return interpolationSearch($arr $lo $pos - 1 $x); } return -1; } // Driver Code // Array of items on which search will // be conducted. $arr = array(10 12 13 16 18 19 20 21 22 23 24 33 35 42 47); $n = sizeof($arr); $x = 47; // Element to be searched $index = interpolationSearch($arr 0 $n - 1 $x); // If element was found if ($index != -1) echo 'Element found at index '.$index; else echo 'Element not found.'; return 0; #This code is contributed by Susobhan Akhuli ?> Izlaz
Element found at index 4
Vremenska složenost: O(log2(dnevnik2n)) za prosječni slučaj i O(n) za najgori slučaj
Složenost pomoćnog prostora: O(1)
Drugi pristup: -
Ovo je iteracijski pristup za interpolacijsko pretraživanje.
- 1. korak: U petlji izračunajte vrijednost 'pos' pomoću formule položaja sonde.
- 2. korak: Ako se podudara, vratite indeks stavke i izađite.
- 3. korak: Ako je stavka manja od arr[pos] izračunajte položaj sonde lijevog podniza. Inače izračunajte isto u desnom podnizu.
- Korak 4: Ponavljajte dok se ne pronađe podudaranje ili dok se podniz ne smanji na nulu.
Ispod je implementacija algoritma.
C++// C++ program to implement interpolation search by using iteration approach #include using namespace std; int interpolationSearch(int arr[] int n int x) { // Find indexes of two corners int low = 0 high = (n - 1); // Since array is sorted an element present // in array must be in range defined by corner while (low <= high && x >= arr[low] && x <= arr[high]) { if (low == high) {if (arr[low] == x) return low; return -1; } // Probing the position with keeping // uniform distribution in mind. int pos = low + (((double)(high - low) / (arr[high] - arr[low])) * (x - arr[low])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in upper part if (arr[pos] < x) low = pos + 1; // If x is smaller x is in the lower part else high = pos - 1; } return -1; } // Main function int main() { // Array of items on whighch search will // be conducted. int arr[] = {10 12 13 16 18 19 20 21 22 23 24 33 35 42 47}; int n = sizeof(arr)/sizeof(arr[0]); int x = 18; // Element to be searched int index = interpolationSearch(arr n x); // If element was found if (index != -1) cout << 'Element found at index ' << index; else cout << 'Element not found.'; return 0; } //this code contributed by Ajay Singh
Java // Java program to implement interpolation // search with recursion import java.util.*; class GFG { // If x is present in arr[0..n-1] then returns // index of it else returns -1. public static int interpolationSearch(int arr[] int lo int hi int x) { int pos; if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code public static void main(String[] args) { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = arr.length; // Element to be searched int x = 18; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) System.out.println('Element found at index ' + index); else System.out.println('Element not found.'); } }
Python # Python equivalent of above C++ code # Python program to implement interpolation search by using iteration approach def interpolationSearch(arr n x): # Find indexes of two corners low = 0 high = (n - 1) # Since array is sorted an element present # in array must be in range defined by corner while low <= high and x >= arr[low] and x <= arr[high]: if low == high: if arr[low] == x: return low; return -1; # Probing the position with keeping # uniform distribution in mind. pos = int(low + (((float(high - low)/( arr[high] - arr[low])) * (x - arr[low])))) # Condition of target found if arr[pos] == x: return pos # If x is larger x is in upper part if arr[pos] < x: low = pos + 1; # If x is smaller x is in lower part else: high = pos - 1; return -1 # Main function if __name__ == '__main__': # Array of items on whighch search will # be conducted. arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47] n = len(arr) x = 18 # Element to be searched index = interpolationSearch(arr n x) # If element was found if index != -1: print ('Element found at index'index) else: print ('Element not found')
C# // C# program to implement interpolation search by using // iteration approach using System; class Program { // Interpolation Search function static int InterpolationSearch(int[] arr int n int x) { int low = 0; int high = n - 1; while (low <= high && x >= arr[low] && x <= arr[high]) { if (low == high) { if (arr[low] == x) return low; return -1; } int pos = low + (int)(((float)(high - low) / (arr[high] - arr[low])) * (x - arr[low])); if (arr[pos] == x) return pos; if (arr[pos] < x) low = pos + 1; else high = pos - 1; } return -1; } // Main function static void Main(string[] args) { int[] arr = {10 12 13 16 18 19 20 21 22 23 24 33 35 42 47}; int n = arr.Length; int x = 18; int index = InterpolationSearch(arr n x); if (index != -1) Console.WriteLine('Element found at index ' + index); else Console.WriteLine('Element not found'); } } // This code is contributed by Susobhan Akhuli
JavaScript // JavaScript program to implement interpolation search by using iteration approach function interpolationSearch(arr n x) { // Find indexes of two corners let low = 0; let high = n - 1; // Since array is sorted an element present // in array must be in range defined by corner while (low <= high && x >= arr[low] && x <= arr[high]) { if (low == high) { if (arr[low] == x) { return low; } return -1; } // Probing the position with keeping // uniform distribution in mind. let pos = Math.floor(low + (((high - low) / (arr[high] - arr[low])) * (x - arr[low]))); // Condition of target found if (arr[pos] == x) { return pos; } // If x is larger x is in upper part if (arr[pos] < x) { low = pos + 1; } // If x is smaller x is in lower part else { high = pos - 1; } } return -1; } // Main function let arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47]; let n = arr.length; let x = 18; // Element to be searched let index = interpolationSearch(arr n x); // If element was found if (index != -1) { console.log('Element found at index' index); } else { console.log('Element not found'); }
Izlaz
Element found at index 4
Vremenska složenost: O(log2(log2 n)) za prosječan slučaj i O(n) za najgori slučaj
Složenost pomoćnog prostora: O(1)
konstruktori u Javi