logo

Pronađite najduži palindrom formiran uklanjanjem ili miješanjem znakova iz niza

Zadani niz pronađite najduži palindrom koji se može konstruirati uklanjanjem ili miješanjem znakova iz niza. Vrati samo jedan palindrom ako postoji više nizova palindroma najveće duljine.

Primjeri: 



  Input:    abc   Output:   a OR b OR c   Input:    aabbcc   Output:   abccba OR baccab OR cbaabc OR any other palindromic string of length 6.   Input:    abbaccd   Output:   abcdcba OR ...   Input:    aba   Output:   aba

Bilo koji palindromski niz možemo podijeliti na tri dijela - početak sredine i kraj. Za palindromski niz neparne duljine recimo da se 2n + 1 'početak' sastoji od prvih n znakova niza, 'sredina' će se sastojati od samo 1 znaka, tj. (n + 1)-ti znak, a 'kraj' će se sastojati od zadnjih n znakova palindromskog niza. Za palindromski niz parne duljine 2n 'mid' će uvijek biti prazan. Treba primijetiti da će 'end' biti obrnuto od 'beg' kako bi niz bio palindrom.

Ideja je koristiti gore navedeno promatranje u našem rješenju. Budući da je miješanje znakova dopušteno, redoslijed znakova nije bitan u ulaznom nizu. Prvo dobivamo frekvenciju svakog znaka u ulaznom nizu. Tada će svi znakovi koji se parno pojavljuju (recimo 2n) u ulaznom nizu biti dio izlaznog niza jer možemo lako smjestiti n znakova u 'početni' niz, a ostalih n znakova u 'krajnji' niz (čuvajući palindromski redoslijed). Za znakove koji se neparno pojavljuju (recimo 2n + 1) popunjavamo 'sredinu' jednim od svih takvih znakova. a preostalih 2n znakova se dijele na pola i dodaju na početku i na kraju.

Ispod je implementacija gornje ideje 



C++
// C++ program to find the longest palindrome by removing // or shuffling characters from the given string #include    using namespace std; // Function to find the longest palindrome by removing // or shuffling characters from the given string string findLongestPalindrome(string str) {  // to stores freq of characters in a string  int count[256] = { 0 };  // find freq of characters in the input string  for (int i = 0; i < str.size(); i++)  count[str[i]]++;  // Any palindromic string consists of three parts  // beg + mid + end  string beg = '' mid = '' end = '';  // solution assumes only lowercase characters are  // present in string. We can easily extend this  // to consider any set of characters  for (char ch = 'a'; ch <= 'z'; ch++)  {  // if the current character freq is odd  if (count[ch] & 1)  {  // mid will contain only 1 character. It  // will be overridden with next character  // with odd freq  mid = ch;  // decrement the character freq to make  // it even and consider current character  // again  count[ch--]--;  }  // if the current character freq is even  else  {  // If count is n(an even number) push  // n/2 characters to beg string and rest  // n/2 characters will form part of end  // string  for (int i = 0; i < count[ch]/2 ; i++)  beg.push_back(ch);  }  }  // end will be reverse of beg  end = beg;  reverse(end.begin() end.end());  // return palindrome string  return beg + mid + end; } // Driver code int main() {  string str = 'abbaccd';  cout << findLongestPalindrome(str);  return 0; } 
Java
// Java program to find the longest palindrome by removing // or shuffling characters from the given string class GFG { // Function to find the longest palindrome by removing // or shuffling characters from the given string  static String findLongestPalindrome(String str) {  // to stores freq of characters in a string  int count[] = new int[256];  // find freq of characters in the input string  for (int i = 0; i < str.length(); i++) {  count[str.charAt(i)]++;  }  // Any palindromic string consists of three parts  // beg + mid + end  String beg = '' mid = '' end = '';  // solution assumes only lowercase characters are  // present in string. We can easily extend this  // to consider any set of characters  for (char ch = 'a'; ch <= 'z'; ch++) {  // if the current character freq is odd  if (count[ch] % 2 == 1) {  // mid will contain only 1 character. It  // will be overridden with next character  // with odd freq  mid = String.valueOf(ch);  // decrement the character freq to make  // it even and consider current character  // again  count[ch--]--;  } // if the current character freq is even  else {  // If count is n(an even number) push  // n/2 characters to beg string and rest  // n/2 characters will form part of end  // string  for (int i = 0; i < count[ch] / 2; i++) {  beg += ch;  }  }  }  // end will be reverse of beg  end = beg;  end = reverse(end);  // return palindrome string  return beg + mid + end;  }  static String reverse(String str) {  // convert String to character array   // by using toCharArray   String ans = '';  char[] try1 = str.toCharArray();  for (int i = try1.length - 1; i >= 0; i--) {  ans += try1[i];  }  return ans;  }  // Driver code  public static void main(String[] args) {  String str = 'abbaccd';  System.out.println(findLongestPalindrome(str));  } } // This code is contributed by PrinciRaj1992 
Python3
# Python3 program to find the longest palindrome by removing # or shuffling characters from the given string # Function to find the longest palindrome by removing # or shuffling characters from the given string def findLongestPalindrome(strr): # to stores freq of characters in a string count = [0]*256 # find freq of characters in the input string for i in range(len(strr)): count[ord(strr[i])] += 1 # Any palindromic consists of three parts # beg + mid + end beg = '' mid = '' end = '' # solution assumes only lowercase characters are # present in string. We can easily extend this # to consider any set of characters ch = ord('a') while ch <= ord('z'): # if the current character freq is odd if (count[ch] & 1): # mid will contain only 1 character. It # will be overridden with next character # with odd freq mid = ch # decrement the character freq to make # it even and consider current character # again count[ch] -= 1 ch -= 1 # if the current character freq is even else: # If count is n(an even number) push # n/2 characters to beg and rest # n/2 characters will form part of end # string for i in range(count[ch]//2): beg += chr(ch) ch += 1 # end will be reverse of beg end = beg end = end[::-1] # return palindrome string return beg + chr(mid) + end # Driver code strr = 'abbaccd' print(findLongestPalindrome(strr)) # This code is contributed by mohit kumar 29 
C#
// C# program to find the longest  // palindrome by removing or // shuffling characters from  // the given string using System; class GFG {  // Function to find the longest   // palindrome by removing or   // shuffling characters from   // the given string  static String findLongestPalindrome(String str)   {  // to stores freq of characters in a string  int []count = new int[256];  // find freq of characters   // in the input string  for (int i = 0; i < str.Length; i++)   {  count[str[i]]++;  }  // Any palindromic string consists of   // three parts beg + mid + end  String beg = '' mid = '' end = '';  // solution assumes only lowercase   // characters are present in string.  // We can easily extend this to   // consider any set of characters  for (char ch = 'a'; ch <= 'z'; ch++)     {  // if the current character freq is odd  if (count[ch] % 2 == 1)   {    // mid will contain only 1 character.   // It will be overridden with next   // character with odd freq  mid = String.Join(''ch);  // decrement the character freq to make  // it even and consider current   // character again  count[ch--]--;  }     // if the current character freq is even  else   {    // If count is n(an even number) push  // n/2 characters to beg string and rest  // n/2 characters will form part of end  // string  for (int i = 0; i < count[ch] / 2; i++)   {  beg += ch;  }  }  }  // end will be reverse of beg  end = beg;  end = reverse(end);  // return palindrome string  return beg + mid + end;  }  static String reverse(String str)   {  // convert String to character array   // by using toCharArray   String ans = '';  char[] try1 = str.ToCharArray();  for (int i = try1.Length - 1; i >= 0; i--)   {  ans += try1[i];  }  return ans;  }  // Driver code  public static void Main()   {  String str = 'abbaccd';  Console.WriteLine(findLongestPalindrome(str));  } } // This code is contributed by 29AjayKumar 
JavaScript
<script> // Javascript program to find the  // longest palindrome by removing // or shuffling characters from  // the given string // Function to find the longest  // palindrome by removing // or shuffling characters from // the given string  function findLongestPalindrome(str)  {  // to stores freq of characters   // in a string  let count = new Array(256);  for(let i=0;i<256;i++)  {  count[i]=0;  }    // find freq of characters in   // the input string  for (let i = 0; i < str.length; i++) {  count[str[i].charCodeAt(0)]++;  }    // Any palindromic string consists  // of three parts  // beg + mid + end  let beg = '' mid = '' end = '';    // solution assumes only   // lowercase characters are  // present in string.   // We can easily extend this  // to consider any set of characters  for (let ch = 'a'.charCodeAt(0);   ch <= 'z'.charCodeAt(0); ch++) {  // if the current character freq is odd  if (count[ch] % 2 == 1) {  // mid will contain only 1 character. It  // will be overridden with next character  // with odd freq  mid = String.fromCharCode(ch);    // decrement the character freq to make  // it even and consider current character  // again  count[ch--]--;  } // if the current character freq is even  else {  // If count is n(an even number) push  // n/2 characters to beg string and rest  // n/2 characters will form part of end  // string  for (let i = 0; i < count[ch] / 2; i++)   {  beg += String.fromCharCode(ch);  }  }  }    // end will be reverse of beg  end = beg;  end = reverse(end);    // return palindrome string  return beg + mid + end;  }    function reverse(str)  {  // convert String to character array   // by using toCharArray   let ans = '';  let try1 = str.split('');    for (let i = try1.length - 1; i >= 0; i--) {  ans += try1[i];  }  return ans;  }    // Driver code  let str = 'abbaccd';  document.write(findLongestPalindrome(str));    // This code is contributed by unknown2108   </script> 

Izlaz
abcdcba

Vremenska složenost gornjeg rješenja je O(n) gdje je n duljina niza. Budući da je broj znakova u abecedi konstantan, oni ne doprinose asimptotskoj analizi.
Pomoćni prostor program koristi M gdje je M broj ASCII znakova.