S obzirom na prazan set u početku i niz upita na njemu, svaki od sljedećih vrsta:
- Umetnite 'x' se vrši pomoću ažuriranja (1 0 10^6 x 1). Imajte na umu da se korijen stabla prenosi indeks start prolazi kao 0 i krajnji indeks kao 10^6 tako da se svi rasponi koji imaju x ažuriraju.
- Izbrišite 'x' se vrši pomoću ažuriranja (1 0 10^6 X -1). Imajte na umu da se korijen stabla prenosi indeks start prolazi kao 0 i krajnji indeks kao 10^6 tako da se svi rasponi koji imaju x ažuriraju.
Primjer:
Input : Insert 1 Insert 4 Insert 7 Median Output : The first three queries should insert 1 4 and 7 into an empty set. The fourth query should return 4 (median of 1 4 7).
U svrhu izlaganja pretpostavljamo sljedeće, ali ove pretpostavke nisu ograničenja ovdje raspravljene metode:
1. U bilo kojem slučaju svi su elementi različiti, a nijedan se od njih ne događa više od jednom.
2. "Medijan" upit se vrši samo kad u setu ima neparnog broja elemenata. (Morat ćemo unijeti dva upita na stablu našeg segmenta u slučaju čak i brojeva)
3. Elementi u skupu kreću se od 1 do +10^6.
Metoda 1 (naivna)
U naivnoj implementaciji možemo napraviti prva dva upita u O (1), ali posljednji upit u O (max_elem) gdje je max_elem maksimalni element svih vremena (uključujući izbrisane elemente).
Pretpostavimo niz računati[] (veličine 10^6 + 1) Za održavanje broja svakog elementa u podskupini. Slijede jednostavni i samoobjavljeni algoritmi za 3 upita:
Umetnite x upit:
count[x]++; if (x > max_elem) max_elem = x; n++;
Izbriši x upit:
if (count[x] > 0) count[x]--; n--;
Srednji upit:
sum = 0; i = 0; while( sum <= n / 2 ) { i++; sum += count[i]; } median = i; return median; Ilustracija broja nizova [] koji predstavlja skup {1 4 7 8 9} Srednji element je '7':
'Medijan' upit namjerava pronaći (n + 1)/2. '1' u nizu u ovom slučaju 3. '1'; Sada isto radimo koristeći segment stabla.
Metoda 2 (koristeći Segment )
Napravimo a segment za pohranu zbroja intervala u kojima interval [a b] predstavlja broj elemenata prisutnih u setu koji je trenutno u rasponu [a b]. Na primjer, ako uzmemo u obzir gornji primjer upita (3 7) vraća 2 upita (4 4) vraća 1 upit (5 5) vraća 0.
Umetci umetnite i izbrišite su jednostavni i oba se mogu implementirati pomoću UPDATE -a funkcije (int x int diff) (dodaje 'diff' u indeksu 'x')
Algoritam
// adds ‘diff’ at index ‘x’ update(node a b x diff) // If leaf node If a == b and a == x segmentTree[node] += diff // If non-leaf node and x lies in its range If x is in [a b] // Update children recursively update(2*node a (a + b)/2 x diff) update(2*node + 1 (a + b)/2 + 1 b x diff) // Update node segmentTree[node] = segmentTree[2 * node] + segmentTree[2 * node + 1]
Gore navedena rekurzivna funkcija radi u O (log (max_elem)) (u ovom slučaju max_elem je 10^6) i koristi se za umetanje i brisanje sljedećim pozivima:
Sada je funkcija pronalaska indeksa s KTH '1' gdje će 'k' u ovom slučaju uvijek biti (n + 1) / 2 Ovo će djelovati poput binarnog pretraživanja. Možete ga smatrati rekurzivnom binarnom funkcijom pretraživanja na stablu segmenta.
Uzmimo primjer da shvatimo da naš skup trenutno ima elemente {1 4 7 8 9} i stoga je predstavljen sljedećim stablom segmenta.
Ako smo na čvoru bez lišća, sigurni smo da ima i oboje djece, vidimo ima li lijevo dijete više ili jednakog broja kao "k" ako smo sigurni da naš indeks leži u lijevom podzemlju, u suprotnom, ako lijevo subtree ima manji broj od 1 od k, sigurni smo da naš indeks leži u desnom podzemlju. To radimo rekurzivno da bismo postigli svoj indeks i odatle ga vraćamo.
Algoritam
1.findKth(node a b k) 2. If a != b 3. If segmentTree[ 2 * node ] >= k 4. return findKth(2*node a (a + b)/2 k) 5. else 6. return findKth(2*node + 1 (a + b)/2 + 1 b k - segmentTree[ 2 * node ]) 7. else 8. return a
Gore navedena rekurzivna funkcija radi u O (log (max_elem)) .
// A C++ program to implement insert delete and // median queries using segment tree #include #define maxn 3000005 #define max_elem 1000000 using namespace std; // A global array to store segment tree. // Note: Since it is global all elements are 0. int segmentTree[maxn]; // Update 'node' and its children in segment tree. // Here 'node' is index in segmentTree[] 'a' and // 'b' are starting and ending indexes of range stored // in current node. // 'diff' is the value to be added to value 'x'. void update(int node int a int b int x int diff) { // If current node is a leaf node if (a == b && a == x ) { // add 'diff' and return segmentTree[node] += diff; return ; } // If current node is non-leaf and 'x' is in its // range if (x >= a && x <= b) { // update both sub-trees left and right update(node*2 a (a + b)/2 x diff); update(node*2 + 1 (a + b)/2 + 1 b x diff); // Finally update current node segmentTree[node] = segmentTree[node*2] + segmentTree[node*2 + 1]; } } // Returns k'th node in segment tree int findKth(int node int a int b int k) { // non-leaf node will definitely have both // children; left and right if (a != b) { // If kth element lies in the left subtree if (segmentTree[node*2] >= k) return findKth(node*2 a (a + b)/2 k); // If kth one lies in the right subtree return findKth(node*2 + 1 (a + b)/2 + 1 b k - segmentTree[node*2]); } // if at a leaf node return the index it stores // information about return (segmentTree[node])? a : -1; } // insert x in the set void insert(int x) { update(1 0 max_elem x 1); } // delete x from the set void delete(int x) { update(1 0 max_elem x -1); } // returns median element of the set with odd // cardinality only int median() { int k = (segmentTree[1] + 1) / 2; return findKth(1 0 max_elem k); } // Driver code int main() { insert(1); insert(4); insert(7); cout << 'Median for the set {147} = ' << median() << endl; insert(8); insert(9); cout << 'Median for the set {14789} = ' << median() << endl; delete(1); delete(8); cout << 'Median for the set {479} = ' << median() << endl; return 0; }
Java // A Java program to implement insert delete and // median queries using segment tree import java.io.*; class GFG{ public static int maxn = 3000005; public static int max_elem = 1000000; // A global array to store segment tree. // Note: Since it is global all elements are 0. public static int[] segmentTree = new int[maxn]; // Update 'node' and its children in segment tree. // Here 'node' is index in segmentTree[] 'a' and // 'b' are starting and ending indexes of range stored // in current node. // 'diff' is the value to be added to value 'x'. public static void update(int node int a int b int x int diff) { // If current node is a leaf node if (a == b && a == x ) { // Add 'diff' and return segmentTree[node] += diff; return ; } // If current node is non-leaf and 'x' // is in its range if (x >= a && x <= b) { // Update both sub-trees left and right update(node * 2 a (a + b) / 2 x diff); update(node * 2 + 1 (a + b) / 2 + 1 b x diff); // Finally update current node segmentTree[node] = segmentTree[node * 2] + segmentTree[node * 2 + 1]; } } // Returns k'th node in segment tree public static int findKth(int node int a int b int k) { // Non-leaf node will definitely have both // children; left and right if (a != b) { // If kth element lies in the left subtree if (segmentTree[node * 2] >= k) { return findKth(node * 2 a (a + b) / 2 k); } // If kth one lies in the right subtree return findKth(node * 2 + 1 (a + b) / 2 + 1 b k - segmentTree[node * 2]); } // If at a leaf node return the index it stores // information about return (segmentTree[node] != 0) ? a : -1; } // Insert x in the set public static void insert(int x) { update(1 0 max_elem x 1); } // Delete x from the set public static void delete(int x) { update(1 0 max_elem x -1); } // Returns median element of the set // with odd cardinality only public static int median() { int k = (segmentTree[1] + 1) / 2; return findKth(1 0 max_elem k); } // Driver code public static void main(String[] args) { insert(1); insert(4); insert(7); System.out.println('Median for the set {147} = ' + median()); insert(8); insert(9); System.out.println('Median for the set {14789} = ' + median()); delete(1); delete(8); System.out.println('Median for the set {479} = ' + median()); } } // This code is contributed by avanitrachhadiya2155
Python3 # A Python3 program to implement insert delete and # median queries using segment tree maxn = 3000005 max_elem = 1000000 # A global array to store segment tree. # Note: Since it is global all elements are 0. segmentTree = [0 for i in range(maxn)] # Update 'node' and its children in segment tree. # Here 'node' is index in segmentTree[] 'a' and # 'b' are starting and ending indexes of range stored # in current node. # 'diff' is the value to be added to value 'x'. def update(node a b x diff): global segmentTree # If current node is a leaf node if (a == b and a == x ): # add 'diff' and return segmentTree[node] += diff return # If current node is non-leaf and 'x' is in its # range if (x >= a and x <= b): # update both sub-trees left and right update(node * 2 a (a + b)//2 x diff) update(node * 2 + 1 (a + b)//2 + 1 b x diff) # Finally update current node segmentTree[node] = segmentTree[node * 2] + segmentTree[node * 2 + 1] # Returns k'th node in segment tree def findKth(node a b k): global segmentTree # non-leaf node will definitely have both # children left and right if (a != b): # If kth element lies in the left subtree if (segmentTree[node * 2] >= k): return findKth(node * 2 a (a + b)//2 k) # If kth one lies in the right subtree return findKth(node * 2 + 1 (a + b)//2 + 1 b k - segmentTree[node * 2]) # if at a leaf node return the index it stores # information about return a if (segmentTree[node]) else -1 # insert x in the set def insert(x): update(1 0 max_elem x 1) # delete x from the set def delete(x): update(1 0 max_elem x -1) # returns median element of the set with odd # cardinality only def median(): k = (segmentTree[1] + 1) // 2 return findKth(1 0 max_elem k) # Driver code if __name__ == '__main__': insert(1) insert(4) insert(7) print('Median for the set {147} ='median()) insert(8) insert(9) print('Median for the set {14789} ='median()) delete(1) delete(8) print('Median for the set {479} ='median()) # This code is contributed by mohit kumar 29
C# // A C# program to implement insert delete // and median queries using segment tree using System; class GFG{ public static int maxn = 3000005; public static int max_elem = 1000000; // A global array to store segment tree. // Note: Since it is global all elements are 0. public static int[] segmentTree = new int[maxn]; // Update 'node' and its children in segment tree. // Here 'node' is index in segmentTree[] 'a' and // 'b' are starting and ending indexes of range stored // in current node. // 'diff' is the value to be added to value 'x'. public static void update(int node int a int b int x int diff) { // If current node is a leaf node if (a == b && a == x) { // Add 'diff' and return segmentTree[node] += diff; return ; } // If current node is non-leaf and 'x' // is in its range if (x >= a && x <= b) { // Update both sub-trees left and right update(node * 2 a (a + b) / 2 x diff); update(node * 2 + 1 (a + b) / 2 + 1 b x diff); // Finally update current node segmentTree[node] = segmentTree[node * 2] + segmentTree[node * 2 + 1]; } } // Returns k'th node in segment tree public static int findKth(int node int a int b int k) { // Non-leaf node will definitely have both // children; left and right if (a != b) { // If kth element lies in the left subtree if (segmentTree[node * 2] >= k) { return findKth(node * 2 a (a + b) / 2 k); } // If kth one lies in the right subtree return findKth(node * 2 + 1 (a + b) / 2 + 1 b k - segmentTree[node * 2]); } // If at a leaf node return the index it // stores information about if (segmentTree[node] != 0) { return a; } else { return -1; } } // Insert x in the set public static void insert(int x) { update(1 0 max_elem x 1); } // Delete x from the set public static void delete(int x) { update(1 0 max_elem x -1); } // Returns median element of the set // with odd cardinality only public static int median() { int k = (segmentTree[1] + 1) / 2; return findKth(1 0 max_elem k); } // Driver code static public void Main() { insert(1); insert(4); insert(7); Console.WriteLine('Median for the set {147} = ' + median()); insert(8); insert(9); Console.WriteLine('Median for the set {14789} = ' + median()); delete(1); delete(8); Console.WriteLine('Median for the set {479} = ' + median()); } } // This code is contributed by rag2127
JavaScript <script> // A Javascript program to implement insert delete and // median queries using segment tree let maxn = 3000005; let max_elem = 1000000; // A global array to store segment tree. // Note: Since it is global all elements are 0. let segmentTree = new Array(maxn); for(let i=0;i<maxn;i++) { segmentTree[i]=0; } // Update 'node' and its children in segment tree. // Here 'node' is index in segmentTree[] 'a' and // 'b' are starting and ending indexes of range stored // in current node. // 'diff' is the value to be added to value 'x'. function update(nodeabxdiff) { // If current node is a leaf node if (a == b && a == x ) { // Add 'diff' and return segmentTree[node] += diff; return ; } // If current node is non-leaf and 'x' // is in its range if (x >= a && x <= b) { // Update both sub-trees left and right update(node * 2 a Math.floor((a + b) / 2) x diff); update(node * 2 + 1 Math.floor((a + b) / 2) + 1 b x diff); // Finally update current node segmentTree[node] = segmentTree[node * 2] + segmentTree[node * 2 + 1]; } } // Returns k'th node in segment tree function findKth(nodeabk) { // Non-leaf node will definitely have both // children; left and right if (a != b) { // If kth element lies in the left subtree if (segmentTree[node * 2] >= k) { return findKth(node * 2 a Math.floor((a + b) / 2) k); } // If kth one lies in the right subtree return findKth(node * 2 + 1 Math.floor((a + b) / 2) + 1 b k - segmentTree[node * 2]); } // If at a leaf node return the index it stores // information about return (segmentTree[node] != 0) ? a : -1; } // Insert x in the set function insert(x) { update(1 0 max_elem x 1); } // Delete x from the set function delet(x) { update(1 0 max_elem x -1); } // Returns median element of the set // with odd cardinality only function median() { let k = (segmentTree[1] + 1) / 2; return findKth(1 0 max_elem k); } // Driver code insert(1); insert(4); insert(7); document.write('Median for the set {147} = ' + median()+'
'); insert(8); insert(9); document.write('Median for the set {14789} = ' + median()+'
'); delet(1); delet(8); document.write('Median for the set {479} = ' + median()+'
'); // This code is contributed by unknown2108 </script>
Izlaz:
Median for the set {147} = 4 Median for the set {14789} = 7 Median for the set {479} = 7
Zaključak:
Sva tri upita ulaze u O (log (max_elem)) U ovom slučaju max_elem = 10^6 Dakle, log (max_elem) je približno jednak 20.
Stablo segmenta koristi O (max_elem) prostor.
Da je upit za brisanje bilo tamo, problem bi mogao biti i s poznatim algoritmom ovdje .